We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Single Amino Acid Controls Signaling Molecule Activity

By LabMedica International staff writers
Posted on 09 Jan 2018
Print article
Image: Probes revealed the inner architecture when the A2AAR protein transmitted molecular signals through a cell membrane (Photo courtesy of Drs. Kurt Wüthrich and Matthew Eddy, The Scripps Research Institute).
Image: Probes revealed the inner architecture when the A2AAR protein transmitted molecular signals through a cell membrane (Photo courtesy of Drs. Kurt Wüthrich and Matthew Eddy, The Scripps Research Institute).
An advanced NMR (nuclear magnetic resonance) spectroscopy technique was used to follow the dynamic structural changes that occurred during binding of a drug to a cell membrane-spanning G protein-coupled receptor.

The 826 human G protein-coupled receptors (GPCRs), which are involved in signaling across cellular membranes, govern a wide range of vital physiological processes, making GPCRs prominent drug targets.

X-ray crystallography techniques have provided GPCR molecular architectures, but these methods lack the ability to detail additional structural dynamics that occur when the molecules are in motion. To complete this picture, investigators at The Scripps Research Institute (La Jolla, CA, USA) used NMR spectroscopy to study the wild-type-like A2A adenosine receptor (A2AAR) in solution. A2AAR is a GPCR that regulates blood flow and inflammation and mediates the effects of caffeine. A2AAR is a validated target for treating Parkinson's disease and a relatively new target for targeting cancers.

To carry out this study the investigators assigned individual chemical markers to each of six tryptophan indole and eight glycine backbone NMR signals in A2AAR. These NMR probes provided insight into the role of a specific aspartic acid (Asp) moiety as an allosteric link between the drug binding site and the intracellular signaling surface.

Results published in the December 2, 2017, online edition of the journal Cell revealed that modifying or replacing this particular amino acid in the center of the receptor destroyed the receptor's ability to send signals into the cell. Furthermore, the NMR data showed that one of the tryptophan amino acids in A2AAR acted as a "toggle switch" by flipping up and down in concert with A2AAR's activity.

"This basic knowledge is potentially helpful for improving drug design," said senior author, the Nobel Prize winning Dr. Kurt Wüthrich, professor of structural biology at The Scripps Research Institute. "GPCRs do just about everything you can imagine, but for a long time, drug design was being done without knowing how GPCRs looked. With this finding, we can say "A-ha! It is this change in structure that kills the signaling activity." Maybe we can make a change in a drug to overcome this limit."

Related Links:
The Scripps Research Institute

Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Blood Gas and Chemistry Analysis System
Edan i500
New
FOB+Transferrin+Calprotectin+Lactoferrin Test
CerTest FOB+Transferrin+Calprotectin+Lactoferrin Combo Test

Print article

Channels

Clinical Chemistry

view channel
Image: A one-step confirmatory laboratory test could definitively diagnose active syphilis infection within 10 minutes (Photo courtesy of Adobe Stock)

First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes

In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more