LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Genomic Study Links Potassium Levels to Regulation of BP

By LabMedica International staff writers
Posted on 04 Jan 2018
A recent paper described a study designed to examine different points of the human genome to determine where the genetic sequence linked serum potassium levels to modulation of blood pressure (BP).

Investigators at the University of Georgia (Athens, USA) performed genome-wide analyses to identify genomic loci that interacted with potassium to influence BP using single-marker and gene-based tests on Chinese participants of the GenSalt study (Genetic Epidemiology Network of Salt Sensitivity).

The initial GenSalt study, which was designed to evaluate gene-diet (sodium and potassium) interactions on BP regulation, was performed in rural areas in northern China from October 2003 to July 2005. The overall objective of the study was to identify susceptibility genes that influenced individual BP responses to dietary sodium and potassium intake in human populations. The specific aims were: (1) To localize and identify novel genes related to variation in BP responses to a low dietary sodium intake and a high dietary sodium intake; (2) To localize and identify novel genes related to variations in BP responses to oral potassium supplementation; and (3) To localize and identify novel genes related to BP responses to a cold pressor test. In addition, the GenSalt study localized and identified genes related to usual BP level and the risk of hypertension.

For the current study, the investigators analyzed data from1876 GenSalt participants. The average results of three urine samples were used to estimate potassium excretion, while nine BP measurements were taken using a random-zero sphygmomanometer. A total of 2.2 million single nucleotide polymorphisms were imputed using Affymetrix (Santa Clara, CA, USA) 6.0 genotype data and the Chinese Han of Beijing and Japanese of Tokyo HapMap reference panels.

Results published in the December 6, 2017, online edition of the journal Circulation: Cardiovascular Genetics revealed two genomic loci - one of which had never been identified - and six individual genes, all significantly associated with the regulation of blood pressure in the body.

“One of the major drawbacks of previous genetic studies of hypertension is that these studies did not explore the interactions between genes and environmental factors,” said senior author Dr. Changwei Li, assistant professor of biostatistics and epidemiology at the University of Georgia. “For example, some genes’ effect on blood pressure only manifests under certain environments. If environmental factors are not taken into account, these genes will not be identified for hypertension.”

“Findings from our study help to identify individuals who are particularly sensitive to dietary potassium as a way to reduce blood pressure, based on their genomic profiles,” said Dr. Li. “Subsequently, we could provide personalized suggestions to prevent disease based on their genotypes.”

Related Links:
University of Georgia
Affymetrix

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more