We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Transcriptomic Biomarker Assay Developed for Genetic Toxicology Testing

By LabMedica International staff writers
Posted on 20 Dec 2017
Print article
A new in vitro test was designed to solve the problem of false positive results that are frequently obtained when evaluating chemical compounds and potential drugs for their potential to cause genetic damage.

Standard in vitro assays to assess genotoxicity frequently generate positive results that are subsequently found to be irrelevant for in vivo carcinogenesis and human cancer risk assessment. Currently used follow-up methods, such as animal testing, are expensive and time-consuming, and the development of approaches enabling more accurate mechanism-based risk assessment is essential.

Toward this end, investigators at Georgetown University (Washington, DC, USA) developed an in vitro transcriptomic biomarker-based approach to provide biological relevance to positive genotoxicity assay data, particularly for in vitro chromosome damage assays. Transcriptomics technologies incorporate the techniques used to study an organism’s transcriptome, the sum of all of its RNA transcripts. For this work the transcriptomic biomarker TGx-DDI (previously known as TGx-28.65), which readily distinguishes DNA damage-inducing (DDI) agents from non-DDI agents was used. The TGx-DDI gene set was derived from TK6 cells exposed to a training set of prototypical DNA damage-inducing agents and chemicals with a clean genetic toxicology profile (28 chemicals: 13 DNA damage-inducing, 15 non DNA-damage inducing).

The investigators assessed the ability of this biomarker to classify 45 test agents across a broad set of chemical classes as DDI or non-DDI. In addition, they assessed the biomarker’s utility for correctly classifying the risk of known irrelevant positive agents and evaluated its performance across analytical platforms.

They reported in the December 4, 2017, online edition of the journal Proceedings of the [U.S.] National Academy of Sciences that they had developed a standardized experimental and analytical protocol for the transcriptomics biomarker, as well as an enhanced application of TGx-DDI for high-throughput cell-based genotoxicity testing. Furthermore, they correctly classified 90% (nine of 10) of chemicals with irrelevant positive findings for in vitro chromosome damage assays as negative.

"The lack of an accurate, rapid and high-throughput test that assesses genotoxicity has been a major bottleneck in the development of new drugs as well as the testing of substances by chemical, cosmetic, and agricultural companies," said senior author Dr. Albert J. Fornace Jr., professor of biochemistry and molecular and cellular biology, oncology, and radiation medicine at Georgetown University. “In addition, there is an increasing mandate to reduce animal testing. Compared to older tests, our approach allows for very accurate and high-throughput screening of chemical compounds that cause DNA damage, and potentially, cancer in humans.”

Related Links:
Georgetown University

Gold Member
Chagas Disease Test
CHAGAS Cassette
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Amoebiasis Test
ELI.H.A Amoeba
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Channels

Clinical Chemistry

view channel
Image: A one-step confirmatory laboratory test could definitively diagnose active syphilis infection within 10 minutes (Photo courtesy of Adobe Stock)

First Comprehensive Syphilis Test to Definitively Diagnose Active Infection In 10 Minutes

In the United States, syphilis cases have surged by nearly 80% from 2018 to 2023, with 209,253 cases recorded in the most recent year of data. Syphilis, which can be transmitted sexually or from mother... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Ziyang Wang and Shengxi Huang have developed a tool that enables precise insights into viral proteins and brain disease markers (Photo courtesy of Jeff Fitlow/Rice University)

Light Signature Algorithm to Enable Faster and More Precise Medical Diagnoses

Every material or molecule interacts with light in a unique way, creating a distinct pattern, much like a fingerprint. Optical spectroscopy, which involves shining a laser on a material and observing how... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more