LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Oligonucleotide Treatment Reduces Neurological Damage in Alzheimer's Model

By LabMedica International staff writers
Posted on 18 Dec 2017
Image: Clumps of toxic Alzheimer\'s A beta protein (white spots) are scarcer in the brains of mice treated with an antisense oligonucleotide that targets APOE4 (top) as compared with those given a placebo (bottom) (Photo courtesy of Tien-Phat Huynh, Washington University School of Medicine).
Image: Clumps of toxic Alzheimer\'s A beta protein (white spots) are scarcer in the brains of mice treated with an antisense oligonucleotide that targets APOE4 (top) as compared with those given a placebo (bottom) (Photo courtesy of Tien-Phat Huynh, Washington University School of Medicine).
Neurological damage in mice that had been genetically engineered to express human apolipoprotein E4 (APOE4) - a gene linked to increased risk of developing Alzheimer's disease - was significantly reduced by treatment with an antisense oligonucleotide.

The apolipoprotein E gene is the strongest genetic risk factor for late-onset Alzheimer's disease. Previous studies suggested that reduction of apoE protein levels through genetic manipulation could reduce the pathology of the disease's Abeta plaques. However, it was not demonstrated how reduction of apoE levels after birth would affect amyloid deposition.

To study the mechanism of apoE toxicity, investigators at Washington University School of Medicine (St. Louis, MO, USA) utilized an antisense oligonucleotide (ASO) to reduce apoE expression in the brains of APP/PS1-21 mice homozygous for the human APOE-epsilon4 or APOE-epsilon3 allele. The ASO or a suitable control material was injected into the brains of mice that were either newly born or of six weeks of age.

The investigators reported in the December 6, 2017, online edition of the journal Neuron that ASO treatment starting after birth led to a significant decrease in Abeta pathology when assessed at four months. In contrast, ASO treatment starting at six weeks - at the onset of amyloid deposition - led to an increase in Abeta plaque size and a reduction in plaque-associated neuron damage with no change in overall plaque load.

"Scientists have been interested in APOE for years but there are only a few examples where researchers have targeted it with a compound in living animals," said senior author Dr. David Holtzman, professor of neurology at Washington University School of Medicine. "Our findings indicate that APOE is not just involved in Alzheimer's risk and disease progression, but it could potentially be a real target for treatment or prevention."

"If you wanted to target APOE to affect the amyloid process, the best thing would be to start before the plaques form," said Dr. Holtzman. "But even if you start later, you still may reduce the amount of damage caused by the plaques. Now that we have shown that it is possible to target APOE, we can start figuring out the best way to do it."

Related Links:
Washington University School of Medicine

Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more