Pumps Achieve High-Speed Sorting of Large Cells
|
By LabMedica International staff writers Posted on 10 Aug 2017 |

Image: The developed microfluidic chip enables sorting of cells at high speed of 16 microseconds. The enlarged view shows a demonstration of on-chip cell sorting of a Euglena gracilis cell (Photo courtesy of Nagoya University).
The sorting of individual cells is necessary for many medical applications, including the isolation of specific cell types from cell suspensions. A fluorescence-activated cell sorting (FACS) has been used for high-throughput cell sorting.
A FACS of larger cells requires the samples to be processed under low pressure through wider nozzles to prevent damage and therefor sorting is limited to low-level throughput. Lasers are used to excite auto-fluorescence or tagged-fluorescence of cell included in droplets, and then the droplets are diverted into different containers depending on their characteristics. This technique is a concern owing to sample infections due to aerosols generation.
Scientists at Nagoya University (Nagoya, Japan) investigating cell sorting used a microfluidic chip to prevent sample infection. This chip has microchannels into which cell suspensions are introduced for sorting. The group integrated two externally driven on-chip pumps into the microfluidic chip for high-speed flow control. Using a high-speed actuator as the driving source of pump, they succeeded in producing a flow with 16 microseconds for cell sorting.
Although various methods of on-chip cell sorting have been proposed, high-throughput sorting of large cells remains hampered by the difficulty of controlling high-speed flow over a wide sorting area. To overcome this problem, the team proposed high-speed local-flow control using dual membrane pumps driven by piezoelectric actuators placed on the outside of a microfluidic chip. They evaluated the controllability of shifting the flow profile by the local-flow.
The technique allows them to sort not only large but also small cells with high speed, high purity, and high viability. The method was tested on microalgae as an example of large cells, around 100 µM in size, and achieved 95.8% purity, 90.8% viability, and a 92.8% success rate. As a model small cell type, they used a cancer cell whose size is around 24 µM, and achieved 98.9% purity, 90.7% viability, and a 97.8% success rate.
Shinya Sakuma, PhD, an assistant professor and lead author said, “Microfluidic chip contains a cross-shaped sorting area and three-branched microfluidic channel. Target/non-target cells are three-dimensionally aligned in the main channel. When target cells are detected, the on-chip pumps work rapidly to sort cells into one of two interest channels. Meanwhile, non-target cells are flushed into the waste channel without pump actuation.” The study was first published on June 14, 2017, in the journal Lab Chip.
Related Links:
Nagoya University
A FACS of larger cells requires the samples to be processed under low pressure through wider nozzles to prevent damage and therefor sorting is limited to low-level throughput. Lasers are used to excite auto-fluorescence or tagged-fluorescence of cell included in droplets, and then the droplets are diverted into different containers depending on their characteristics. This technique is a concern owing to sample infections due to aerosols generation.
Scientists at Nagoya University (Nagoya, Japan) investigating cell sorting used a microfluidic chip to prevent sample infection. This chip has microchannels into which cell suspensions are introduced for sorting. The group integrated two externally driven on-chip pumps into the microfluidic chip for high-speed flow control. Using a high-speed actuator as the driving source of pump, they succeeded in producing a flow with 16 microseconds for cell sorting.
Although various methods of on-chip cell sorting have been proposed, high-throughput sorting of large cells remains hampered by the difficulty of controlling high-speed flow over a wide sorting area. To overcome this problem, the team proposed high-speed local-flow control using dual membrane pumps driven by piezoelectric actuators placed on the outside of a microfluidic chip. They evaluated the controllability of shifting the flow profile by the local-flow.
The technique allows them to sort not only large but also small cells with high speed, high purity, and high viability. The method was tested on microalgae as an example of large cells, around 100 µM in size, and achieved 95.8% purity, 90.8% viability, and a 92.8% success rate. As a model small cell type, they used a cancer cell whose size is around 24 µM, and achieved 98.9% purity, 90.7% viability, and a 97.8% success rate.
Shinya Sakuma, PhD, an assistant professor and lead author said, “Microfluidic chip contains a cross-shaped sorting area and three-branched microfluidic channel. Target/non-target cells are three-dimensionally aligned in the main channel. When target cells are detected, the on-chip pumps work rapidly to sort cells into one of two interest channels. Meanwhile, non-target cells are flushed into the waste channel without pump actuation.” The study was first published on June 14, 2017, in the journal Lab Chip.
Related Links:
Nagoya University
Latest Technology News
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
- AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
- AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
- AI Model Achieves Breakthrough Accuracy in Ovarian Cancer Detection
- Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
- Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement

- Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
- Viral Biosensor Test Simultaneously Detects Hepatitis and HIV
- Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
- AI Algorithm Assesses Progressive Decline in Kidney Function
Channels
Clinical Chemistry
view channel
Chemical Imaging Probe Could Track and Treat Prostate Cancer
Prostate cancer remains a leading cause of illness and death among men, with many patients eventually developing resistance to standard hormone-blocking therapies. These drugs often lose effectiveness... Read more
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read moreMolecular Diagnostics
view channel
Simple Urine Test to Revolutionize Bladder Cancer Diagnosis and Treatment
Bladder cancer is one of the most common and deadly urological cancers and is marked by a high rate of recurrence. Diagnosis and follow-up still rely heavily on invasive cystoscopy or urine cytology, which... Read more
Blood Test to Enable Earlier and Simpler Detection of Liver Fibrosis
Persistent liver damage caused by alcohol misuse or viral infections can trigger liver fibrosis, a condition in which healthy tissue is gradually replaced by collagen fibers. Even after successful treatment... Read moreHematology
view channel
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
Since HIV was identified in 1983, more than 91 million people have contracted the virus, and over 44 million have died from related causes. Today, nearly 40 million individuals worldwide live with HIV-1,... Read more
Gene Signature Test Predicts Response to Key Breast Cancer Treatment
DK4/6 inhibitors paired with hormone therapy have become a cornerstone treatment for advanced HR+/HER2– breast cancer, slowing tumor growth by blocking key proteins that drive cell division.... Read more
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read moreMicrobiology
view channel
Rapid Diagnostic Test Matches Gold Standard for Sepsis Detection
Sepsis kills 11 million people worldwide every year and generates massive healthcare costs. In the USA and Europe alone, sepsis accounts for USD 100 billion in annual hospitalization expenses.... Read moreRapid POC Tuberculosis Test Provides Results Within 15 Minutes
Tuberculosis remains one of the world’s deadliest infectious diseases, and reducing new cases depends on identifying individuals with latent infection before it progresses. Current diagnostic tools often... Read more
Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples
Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read morePathology
view channel
Tunable Cell-Sorting Device Holds Potential for Multiple Biomedical Applications
Isolating rare cancer cells from blood is essential for diagnosing metastasis and guiding treatment decisions, but remains technically challenging. Many existing techniques struggle to balance accuracy,... Read moreAI Tool Outperforms Doctors in Spotting Blood Cell Abnormalities
Diagnosing blood disorders depends on recognizing subtle abnormalities in cell size, shape, and structure, yet this process is slow, subjective, and requires years of expert training. Even specialists... Read moreIndustry
view channel
Abbott Acquires Cancer-Screening Company Exact Sciences
Abbott (Abbott Park, IL, USA) has entered into a definitive agreement to acquire Exact Sciences (Madison, WI, USA), enabling it to enter and lead in fast-growing cancer diagnostics segments.... Read more








