Cholesterol Test May Help Assess Heart Disease Risk
By LabMedica International staff writers Posted on 27 Jun 2017 |
Researchers have developed a first-of-its-kind rapid assay for measuring effectiveness of a patient’s high-density lipoprotein cholesterol (HDL-C) in cleaning up arterial cholesterol. This HDL-C function test could improve risk assessment and diagnosis, and help provide and monitor more personalized treatments for cardiovascular disease (CVD) patients.
While scientists have yet to fully elucidate how HDL-C helps protects against heart disease, one of its chief functions is thought to be mediating the removal of cholesterol from blood vessel walls. Recent studies have indicated that the ability of a patient’s HDL-C to do this – known as its cholesterol efflux capacity (CEC) – is a better gauge of CVD development than HDL-C levels on their own. This means, for example, that a patient with low levels of HDL-C but optimal CEC could be protected against heart disease to a greater degree than a patient with high levels of HDL-C but low CEC. However, the current standard research procedures for measuring CEC involve radioisotope-labeled cholesterol and cultured macrophages, making these methods too complex and time-consuming for clinical testing.
In this study, a team of researchers led by Amane Harada, PhD, of Sysmex Corporation (Kobe, Japan) and Ryuji Toh, MD, PhD, of Kobe University Graduate School of Medicine (Kobe, Japan) has developed a test for HDL-C function that is simple enough for clinical use. With a turnaround time of less than 6 hours, the test determines cholesterol uptake capacity (CUC) – the ability of HDL-C to accept additional cholesterol – which the researchers found correlates with CEC but is easier to measure.
They evaluated their CUC test in 156 patients who had undergone revascularization (such as a stent or bypass) due to coronary artery disease and who had subsequently decreased their low-density lipoprotein cholesterol to a healthier level of less than 100 mg/dL. The study found that low CUC in these patients after treatment was significantly associated with the recurrence of coronary lesions. The researchers also determined that combining CUC with established CVD risk factors significantly improved the power of established factors to forecast which patients would redevelop heart disease.
If further trials validate this test, it could enable healthcare providers to use CUC in conjunction with HDL-C levels to better predict who is at risk for CVD onset or recurrence. This test could also be used to develop new treatments that increase CEC and to monitor their efficacy in patients.
“A more efficient enhancement of the atheroprotective functions of HDL may decrease the risk of atherosclerosis and [cardiovascular disease], although it has been difficult to develop therapeutic drugs with the expected effects,” wrote Harada and Toh in this paper, “We consider that this can be explained in part by the lack of a convenient assay system to evaluate HDL functionality without complicated or time-consuming procedures. In this respect, our cholesterol uptake assay provides a concise, accurate, and robust system for high-throughput analysis at low cost.”
The study, by Harada A et al, was published in the May 2017 issue of the Journal of Applied Laboratory Medicine.
Related Links:
While scientists have yet to fully elucidate how HDL-C helps protects against heart disease, one of its chief functions is thought to be mediating the removal of cholesterol from blood vessel walls. Recent studies have indicated that the ability of a patient’s HDL-C to do this – known as its cholesterol efflux capacity (CEC) – is a better gauge of CVD development than HDL-C levels on their own. This means, for example, that a patient with low levels of HDL-C but optimal CEC could be protected against heart disease to a greater degree than a patient with high levels of HDL-C but low CEC. However, the current standard research procedures for measuring CEC involve radioisotope-labeled cholesterol and cultured macrophages, making these methods too complex and time-consuming for clinical testing.
In this study, a team of researchers led by Amane Harada, PhD, of Sysmex Corporation (Kobe, Japan) and Ryuji Toh, MD, PhD, of Kobe University Graduate School of Medicine (Kobe, Japan) has developed a test for HDL-C function that is simple enough for clinical use. With a turnaround time of less than 6 hours, the test determines cholesterol uptake capacity (CUC) – the ability of HDL-C to accept additional cholesterol – which the researchers found correlates with CEC but is easier to measure.
They evaluated their CUC test in 156 patients who had undergone revascularization (such as a stent or bypass) due to coronary artery disease and who had subsequently decreased their low-density lipoprotein cholesterol to a healthier level of less than 100 mg/dL. The study found that low CUC in these patients after treatment was significantly associated with the recurrence of coronary lesions. The researchers also determined that combining CUC with established CVD risk factors significantly improved the power of established factors to forecast which patients would redevelop heart disease.
If further trials validate this test, it could enable healthcare providers to use CUC in conjunction with HDL-C levels to better predict who is at risk for CVD onset or recurrence. This test could also be used to develop new treatments that increase CEC and to monitor their efficacy in patients.
“A more efficient enhancement of the atheroprotective functions of HDL may decrease the risk of atherosclerosis and [cardiovascular disease], although it has been difficult to develop therapeutic drugs with the expected effects,” wrote Harada and Toh in this paper, “We consider that this can be explained in part by the lack of a convenient assay system to evaluate HDL functionality without complicated or time-consuming procedures. In this respect, our cholesterol uptake assay provides a concise, accurate, and robust system for high-throughput analysis at low cost.”
The study, by Harada A et al, was published in the May 2017 issue of the Journal of Applied Laboratory Medicine.
Related Links:
Latest Clinical Chem. News
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
- Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability
- Rapid Drug Test to Improve Treatment for Patients Presenting to Hospital
- AI Model Detects Cancer at Lightning Speed through Sugar Analyses
- First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring
- New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections
- 3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models
- POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection
- Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases
Channels
Molecular Diagnostics
view channel
Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more
Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
Approximately one in three women aged 14-49 in the United States will experience bacterial vaginosis (BV), a vaginal bacterial imbalance, at some point in their lives. Around 50% of BV cases do not present... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration
Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Philips and Ibex Expand Partnership to Enhance AI-Enabled Pathology Workflows
Royal Philips (Amsterdam, The Netherlands) has expanded its partnership with Ibex Medical Analytics (Tel Aviv, Israel) and released the new Philips IntelliSite Pathology Solution (PIPS) to further accelerate... Read more
Grifols and Inpeco Partner to Deliver Transfusion Medicine ‘Lab of The Future’
Grifols (Barcelona, Spain), a manufacturer of plasma-derived medicines and innovative diagnostic solutions, has entered into a strategic agreement with Inpeco (Novazzano, Switzerland), a global leader... Read more