Baby Teeth Reveal Association Between Autism and Metals
By LabMedica International staff writers Posted on 12 Jun 2017 |

Image: An overview of tooth-matrix biomarkers applied in this study (Photo courtesy of Arora M et al / Nature Communications).
Analyzing fetal and postnatal teeth, researchers have found that levels of specific metal nutrients and toxins during pregnancy and early childhood is correlated with risk of developing autism spectrum disorders (ASD). Both amount and timing of abnormal levels can affect risk and diagnosis.
The work was performed collaboratively by researchers from the Icahn School of Medicine at Mount Sinai Health Center (New York, NY, USA) and the Karolinska Institute (Solna, Sweden). The principal investigator at Karolinska Institute, Prof. Sven Bölte, PhD, leads the related Roots of Autism and ADHD Twin Study Sweden (RATSS).
Their study revealed that differences in uptake of multiple toxic and essential elements over the second and third trimesters and early postnatal periods are associated with the risk of developing ASD. The critical developmental windows for the observed discrepancies varied for each element, suggesting that systemic dysregulation of environmental pollutants and dietary elements may serve an important role. They also pinpointed developmental time periods when elemental dysregulation poses the biggest risk for autism later in life.
“We found significant divergences in metal uptake between ASD-affected children and their healthy siblings, but only during discrete developmental periods,” said Manish Arora, PhD, BDS, MPH, director of Exposure Biology at Mount Sinai, “Specifically, the siblings with ASD had higher uptake of the neurotoxin lead, and reduced uptake of the essential elements manganese and zinc, during late pregnancy and the first few months after birth, as evidenced through analysis of their baby teeth. Furthermore, metal levels at 3 months after birth were shown to be predictive of the severity of ASD 8-10 years later in life.”
The exact causes of ASD are unknown, but both environmental and genetic causes are likely involved. Specific environmental factors and stages of life when such exposures may have the biggest impact are poorly understood. Previous research indicates that fetal and early childhood exposure to toxic metals and deficiencies of nutritional elements are linked with several adverse developmental outcomes, including intellectual disability and language, attention, and behavioral problems.
To help determine effects that the timing, amount, and subsequent absorption of toxins and nutrients have on ASD, the researchers used validated tooth-matrix biomarkers to analyze baby teeth collected from pairs of identical and non-identical twins, of which at least one had a diagnosis of ASD. They also analyzed teeth from pairs of normally developing twins that served as the study control group.
During fetal and childhood development, a new tooth layer is formed every week or so, leaving an “imprint” of the micro chemical composition from each unique layer, which provides a chronological record of exposure. The team used lasers to reconstruct these past exposures along incremental markings, similar to using growth rings on a tree to determine the tree’s growth history.
“Our data shows a potential pathway for interplay between genes and the environment,” said Abraham Reichenberg, PhD, professor at Mount Sinai, “Our findings underscore the importance of a collaborative effort between geneticists and environmental researchers for future investigations into the relationship between metal exposure and ASD to help us uncover the root causes of autism, and support the development of effective interventions and therapies.”
Additional studies are needed to determine whether the discrepancies are due to differences in how much a fetus or child is exposed or because of a genetic difference in how a child takes in, processes, and/or breaks down these metals and nutrients.
The Seaver Center for Autism Research and Treatment at Mount Sinai is recruiting twins or siblings for further study. For information about participating, email theseavercenter@mssm.edu.
The study, by Arora M et al, was published June 1, 2017, in the journal Nature Communications.
Related Links:
Mount Sinai Health Center
Karolinska Institute
The work was performed collaboratively by researchers from the Icahn School of Medicine at Mount Sinai Health Center (New York, NY, USA) and the Karolinska Institute (Solna, Sweden). The principal investigator at Karolinska Institute, Prof. Sven Bölte, PhD, leads the related Roots of Autism and ADHD Twin Study Sweden (RATSS).
Their study revealed that differences in uptake of multiple toxic and essential elements over the second and third trimesters and early postnatal periods are associated with the risk of developing ASD. The critical developmental windows for the observed discrepancies varied for each element, suggesting that systemic dysregulation of environmental pollutants and dietary elements may serve an important role. They also pinpointed developmental time periods when elemental dysregulation poses the biggest risk for autism later in life.
“We found significant divergences in metal uptake between ASD-affected children and their healthy siblings, but only during discrete developmental periods,” said Manish Arora, PhD, BDS, MPH, director of Exposure Biology at Mount Sinai, “Specifically, the siblings with ASD had higher uptake of the neurotoxin lead, and reduced uptake of the essential elements manganese and zinc, during late pregnancy and the first few months after birth, as evidenced through analysis of their baby teeth. Furthermore, metal levels at 3 months after birth were shown to be predictive of the severity of ASD 8-10 years later in life.”
The exact causes of ASD are unknown, but both environmental and genetic causes are likely involved. Specific environmental factors and stages of life when such exposures may have the biggest impact are poorly understood. Previous research indicates that fetal and early childhood exposure to toxic metals and deficiencies of nutritional elements are linked with several adverse developmental outcomes, including intellectual disability and language, attention, and behavioral problems.
To help determine effects that the timing, amount, and subsequent absorption of toxins and nutrients have on ASD, the researchers used validated tooth-matrix biomarkers to analyze baby teeth collected from pairs of identical and non-identical twins, of which at least one had a diagnosis of ASD. They also analyzed teeth from pairs of normally developing twins that served as the study control group.
During fetal and childhood development, a new tooth layer is formed every week or so, leaving an “imprint” of the micro chemical composition from each unique layer, which provides a chronological record of exposure. The team used lasers to reconstruct these past exposures along incremental markings, similar to using growth rings on a tree to determine the tree’s growth history.
“Our data shows a potential pathway for interplay between genes and the environment,” said Abraham Reichenberg, PhD, professor at Mount Sinai, “Our findings underscore the importance of a collaborative effort between geneticists and environmental researchers for future investigations into the relationship between metal exposure and ASD to help us uncover the root causes of autism, and support the development of effective interventions and therapies.”
Additional studies are needed to determine whether the discrepancies are due to differences in how much a fetus or child is exposed or because of a genetic difference in how a child takes in, processes, and/or breaks down these metals and nutrients.
The Seaver Center for Autism Research and Treatment at Mount Sinai is recruiting twins or siblings for further study. For information about participating, email theseavercenter@mssm.edu.
The study, by Arora M et al, was published June 1, 2017, in the journal Nature Communications.
Related Links:
Mount Sinai Health Center
Karolinska Institute
Latest Clinical Chem. News
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
- Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability
- Rapid Drug Test to Improve Treatment for Patients Presenting to Hospital
- AI Model Detects Cancer at Lightning Speed through Sugar Analyses
- First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring
- New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections
- 3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models
- POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection
- Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases
Channels
Molecular Diagnostics
view channel
D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism
Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more
New Biomarkers to Improve Early Detection and Monitoring of Kidney Injury
Drug-induced kidney injury, also known as nephrotoxicity, is a prevalent issue in clinical practice, occurring when specific medications at certain doses cause damage to the kidneys. Nephrotoxicity can... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Tecan Acquires ELISA Immunoassay Assets from Revvity's Cisbio Bioassays
Tecan Group (Männedorf, Switzerland) has entered into an agreement to acquire certain assets relating to key ELISA immunoassay products from Cisbio Bioassays SAS (Codolet, France), a subsidiary of the... Read more