LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Device Automates Collection of Extracellular Vesicles from Biological Fluids

By LabMedica International staff writers
Posted on 15 Mar 2017
Image: The Exodisc device effectively isolates extracellular vesicles from biological samples such as urine or blood (Photo courtesy of the Ulsan National Institute of Science and Technology).
Image: The Exodisc device effectively isolates extracellular vesicles from biological samples such as urine or blood (Photo courtesy of the Ulsan National Institute of Science and Technology).
A team of Korean cancer researchers has developed an automated system for isolating extracellular vesicles from biological fluids such as cell culture growth medium, urine, or blood.

Extracellular vesicles (EVs) are cell-derived nanoscale vacuoles that can transport nucleic acids and proteins from their cells of origin and show great potential as biomarkers for many diseases, including cancer. Current methods of EV isolation and analysis require time-consuming complicated procedures, including ultracentrifugation, and demand large amounts of sample material.

To simplify the isolation and analysis of EVs, investigators at Ulsan National Institute of Science and Technology developed a rapid, label-free, and highly sensitive method based on a lab-on-a-disc device integrated with two nanofilters. This "Exodisc" device is composed of two independent filtration units (20 nanometers and 600 nanometers in size) within a disk-shaped chip. While being processed for 30 minutes in a tabletop-sized centrifugal microfluidic system, the sample is transferred through the two integrated nanofilters, which enriches EVs within the size range of 20 to 600 nanometers.

The investigators used a quantitative nanoparticle-tracking analysis technique to show that the Exodisc device enabled greater than 95% recovery of EVs from cell culture supernatant. Analysis of mRNA retrieved from EVs revealed that the Exodisc provided more than 100-fold higher concentration of mRNA as compared with the gold-standard ultracentrifugation method. In addition, an on-disc enzyme-linked immunosorbent assay (ELISA) using urinary EVs isolated from bladder cancer patients showed high levels of the marker proteins CD9 and CD81 expression, suggesting that this method may be potentially useful in clinical settings to test urinary EV-based biomarkers for cancer diagnostics.

"Using Exodisc, it is possible to isolate EVs from raw samples within 30 minutes," said senior author Dr. Yoon-Kyoung Cho, professor of biomedical engineering at Ulsan National Institute of Science and Technology. "The process of passing the filter through centrifugal force is automatically carried out, effectively recovering the enriched EVs. We are currently conducting further studies to determine various diseases, including cancer by analyzing the collected nanoparticles. We hope this device can contribute significantly to the advancement of studies related to tumor biology and acceleration of the practical use of EV-based liquid biopsies for personalized medicine in clinical settings."

The Exodisc device was described in detail in the January 9, 2017, online edition of the journal ACS Nano.

Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more