New Technology Quickly Diagnoses Malaria
|
By LabMedica International staff writers Posted on 06 Oct 2016 |

Image: Gradient maps of uninfected RBC and RBCs infected by P. falciparum in early trophozoite, late trophozoite, and schizont stages (scale bar = 5µm) (Photo courtesy of Duke University).
The gold standard for malaria diagnosis is manual microscopic evaluation of Giemsa stained blood smears; however, the utility of this approach is limited by the skill of an expert microscopist. Further, both the staining process and microscopic examination can be time consuming.
A computerized method has been developed that relies on computers and light-based holographic scans correctly identified malaria-infected cells in a blood sample and this technique does not require any human intervention and could form the basis for a rapid field test for malaria.
A multidisciplinary team of scientists from Duke University (Durham, NC, USA) collected whole blood samples from healthy donors and red blood cells (RBCs) were isolated and purified. RBCs were infected with a Plasmodium falciparum, and synchronized. During the 48-hour life cycle, infected RBCs were isolated from the general RBC population by magnetic sorting via a magnetic cell separation system (MACS, Miltenyi Biotec, Bergisch Gladbach, Germany) to separate uninfected RBCs from those containing parasites. The team used quantitative phase spectroscopy system (QPS) to image red blood cells. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information.
Machine learning algorithms were used to distinguish uninfected RBCs from three different hemozoin containing stages of P. falciparum infected RBCs (early trophozoite–ET, late trophozoite–LT, and schizont–S). All of the classification methods have higher specificities compared to their sensitivities when distinguishing uninfected from infected RBCs for all three stages of infection. The specificities ranged from 98.4% for LT with the early stage of infection (ET) to 100% for the best performing method (LDC) for both LT and S stages.
The authors concluded that one of the main strengths of using machine learning algorithms to analyze the extracted parameters is that the identification of RBC infection will be based on quantified metrics and pre-built classifiers that requires minimal operator training. In order to enable automated imaging in the future, a microfluidic device with controlled flow rates can be combined with the analysis approach that would allow high throughput.
Adam Wax, PhD, a professor of biomedical engineering who helped pioneer the technology, said, “With this technique, the path is there to be able to process thousands of cells per minute. That’s a huge improvement to the 40 minutes it currently takes a field technician to stain, prepare and read a slide to personally look for infection,” The study was published on September 16, 2016, in the journal Public Library of Science ONE.
Related Links:
Duke University
Miltenyi Biotec
A computerized method has been developed that relies on computers and light-based holographic scans correctly identified malaria-infected cells in a blood sample and this technique does not require any human intervention and could form the basis for a rapid field test for malaria.
A multidisciplinary team of scientists from Duke University (Durham, NC, USA) collected whole blood samples from healthy donors and red blood cells (RBCs) were isolated and purified. RBCs were infected with a Plasmodium falciparum, and synchronized. During the 48-hour life cycle, infected RBCs were isolated from the general RBC population by magnetic sorting via a magnetic cell separation system (MACS, Miltenyi Biotec, Bergisch Gladbach, Germany) to separate uninfected RBCs from those containing parasites. The team used quantitative phase spectroscopy system (QPS) to image red blood cells. Refocused images are analyzed to extract 23 morphological descriptors based on the phase information.
Machine learning algorithms were used to distinguish uninfected RBCs from three different hemozoin containing stages of P. falciparum infected RBCs (early trophozoite–ET, late trophozoite–LT, and schizont–S). All of the classification methods have higher specificities compared to their sensitivities when distinguishing uninfected from infected RBCs for all three stages of infection. The specificities ranged from 98.4% for LT with the early stage of infection (ET) to 100% for the best performing method (LDC) for both LT and S stages.
The authors concluded that one of the main strengths of using machine learning algorithms to analyze the extracted parameters is that the identification of RBC infection will be based on quantified metrics and pre-built classifiers that requires minimal operator training. In order to enable automated imaging in the future, a microfluidic device with controlled flow rates can be combined with the analysis approach that would allow high throughput.
Adam Wax, PhD, a professor of biomedical engineering who helped pioneer the technology, said, “With this technique, the path is there to be able to process thousands of cells per minute. That’s a huge improvement to the 40 minutes it currently takes a field technician to stain, prepare and read a slide to personally look for infection,” The study was published on September 16, 2016, in the journal Public Library of Science ONE.
Related Links:
Duke University
Miltenyi Biotec
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







