Molecular Test Detects Three Arboviruses in Plasma Samples
By LabMedica International staff writers Posted on 04 Aug 2016 |

Image: A digitally colorized transmission electron micrograph (TEM) of Zika virus. Viral particles are 40 nm in diameter with an outer envelope and dense inner core (Photo courtesy of Cynthia Goldsmith / CDC).
Currently, multiple arboviruses are circulating in Brazil: Zika, chikungunya and dengue and they have similar clinical pictures, which can lead to misdiagnosis based on clinical grounds alone.
Detection tests for viral ribonucleic acid (RNA) such as the quantitative reverse transcription polymerase chain reaction (RT-qPCR) can reliably and specifically distinguish the three viruses and the specific diagnosis can be important in anticipating, preventing, and managing complications.
Scientists at the Laboratório Sabin (Brasília, Brazil) and their colleagues collected 90 plasma samples from the routine arbovirus laboratory, 20 positive for Zika (RT-qPCR), six positive for chikungunya (RT-qPCR), 18 positive for dengue nonstructural protein 1 antigen test (NS-1) and 46 negative for all three viruses. Nucleic acids were extracted from 1mL of sample by using an automated DNA extractor. An in-vitro transcribed random RNA sequence, which is not found in the nature, was spiked into plasmas during the nucleic acids extraction to function as a process control. Primers/probes for chikungunya were specifically designed for this study.
Zika, chikungunya and dengue viruses were assessed simultaneously by RT-qPCR, but in independent reaction wells. The control RNA was co-amplified in all instances. The viral loads of specific samples were quantified against a serial dilution of synthetic single-stranded DNA (ssDNA) and the limits of detection of each assay were determined by probit regression analysis. To investigate the precision of the assays, three samples at ~72, ~7.2 and ~0.72 copies/mL of each viruses were evaluated by using the Clinical and Laboratory Standards Institute (CLSI) EP12-A2 method during five days in quadruplicate by two operators.
The investigators reported that the limits of detection were 26 copies/mL for Zika, 23.5 copies/mL, for chikungunya and 25.6 copies/mL for dengue. The ~72, ~7.2 and ~0.72 copies/mL samples yielded 18/20 (90%), 2/20 (10%) and 1/20 (5%) positive results for Zika, 18/20 (90%), 4/20 (20%) and 0/20 (0%) positive results for chikungunya and 20/20 (100%), 16/20 (80%) and 0/20 (0%) positive results for dengue, respectively. The total, positive and negative agreements between compared methods were 95.5%, 90% and 97.5 for Zika, 100% for all methods for chikungunya and 95.6%, 100% and 94.5%, for dengue, respectively. No cross-reaction was observed.
The authors concluded that the RT-PCR method for simultaneous detection of Zika, chikungunya and dengue viruses is highly sensitive, all assays showed limit of detection below 50 copies/mL. Moreover, cut-off regions were characterized and acceptable precisions were observed for positive (~72 copies/mL and above) and negative (~0.72 copies/mL and below) results. Finally, the agreements with the comparative methods were very good, above 90% of concordance in all instances. The study was presented at the 68th American Association of Clinical Chemistry (AACC) Annual Scientific Meeting held July 31 to August 4, 2016, in Philadelphia, PA, USA.
Related Links:
Laboratório Sabin
American Association of Clinical Chemistry
Detection tests for viral ribonucleic acid (RNA) such as the quantitative reverse transcription polymerase chain reaction (RT-qPCR) can reliably and specifically distinguish the three viruses and the specific diagnosis can be important in anticipating, preventing, and managing complications.
Scientists at the Laboratório Sabin (Brasília, Brazil) and their colleagues collected 90 plasma samples from the routine arbovirus laboratory, 20 positive for Zika (RT-qPCR), six positive for chikungunya (RT-qPCR), 18 positive for dengue nonstructural protein 1 antigen test (NS-1) and 46 negative for all three viruses. Nucleic acids were extracted from 1mL of sample by using an automated DNA extractor. An in-vitro transcribed random RNA sequence, which is not found in the nature, was spiked into plasmas during the nucleic acids extraction to function as a process control. Primers/probes for chikungunya were specifically designed for this study.
Zika, chikungunya and dengue viruses were assessed simultaneously by RT-qPCR, but in independent reaction wells. The control RNA was co-amplified in all instances. The viral loads of specific samples were quantified against a serial dilution of synthetic single-stranded DNA (ssDNA) and the limits of detection of each assay were determined by probit regression analysis. To investigate the precision of the assays, three samples at ~72, ~7.2 and ~0.72 copies/mL of each viruses were evaluated by using the Clinical and Laboratory Standards Institute (CLSI) EP12-A2 method during five days in quadruplicate by two operators.
The investigators reported that the limits of detection were 26 copies/mL for Zika, 23.5 copies/mL, for chikungunya and 25.6 copies/mL for dengue. The ~72, ~7.2 and ~0.72 copies/mL samples yielded 18/20 (90%), 2/20 (10%) and 1/20 (5%) positive results for Zika, 18/20 (90%), 4/20 (20%) and 0/20 (0%) positive results for chikungunya and 20/20 (100%), 16/20 (80%) and 0/20 (0%) positive results for dengue, respectively. The total, positive and negative agreements between compared methods were 95.5%, 90% and 97.5 for Zika, 100% for all methods for chikungunya and 95.6%, 100% and 94.5%, for dengue, respectively. No cross-reaction was observed.
The authors concluded that the RT-PCR method for simultaneous detection of Zika, chikungunya and dengue viruses is highly sensitive, all assays showed limit of detection below 50 copies/mL. Moreover, cut-off regions were characterized and acceptable precisions were observed for positive (~72 copies/mL and above) and negative (~0.72 copies/mL and below) results. Finally, the agreements with the comparative methods were very good, above 90% of concordance in all instances. The study was presented at the 68th American Association of Clinical Chemistry (AACC) Annual Scientific Meeting held July 31 to August 4, 2016, in Philadelphia, PA, USA.
Related Links:
Laboratório Sabin
American Association of Clinical Chemistry
Latest AACC 2016 News
- Derived Exosomal Protein Biomarkers in Alzheimer’s Disease Diagnosis
- New Biochip Array Developed for ApoE4 Classification
- Cell-Free DNA Identifies Liver Transplant Patients with Acute Rejection
- New Method Tested for Early Diagnosis Pediatric Diabetic Nephropathy
- FDA-Cleared Automated Cell Counter for CSF Launched at AACC 2016
- Semen Analysis Portfolio with Two New Products Featured at AACC 2016
- Automation Solutions for Clinical Diagnostic Equipment Showcased at AACC 2016
- New Tubes Designed for Medium Sample Volumes
- Multi Sample Osmometer Improves Testing Efficiency
- Innovative Information System Optimizes Laboratory Processes
- Innovative eLearning Interface Seamlessly Connects Competency Data
- Cloud-Based Connectivity Platform Advances Decentralized Healthcare
- Adhesives Research to Present Hydrophilic Adhesive Technologies
- Point-of-Care Immunoassay Analyzer on Display at AACC Annual Meeting
- Assay for Determination of 17-OH Progesterone to Be Featured at AACC Annual Meeting
- Fully Automated HbA1c Analyzer Available for Inspection at AACC Annual Meeting
Channels
Clinical Chemistry
view channel
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
Children are experiencing metabolic problems at increasingly younger ages, placing them at higher risk for serious health issues later in life. There is a growing need to identify this risk from birth... Read more
Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
Parkinson’s disease is a neurodegenerative condition typically diagnosed at an advanced stage based on clinical symptoms, primarily motor disorders. However, by this time, the brain has already undergone... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more