Rapid Technique Described for Detection of KRAS Mutations in Pathology Specimens
|
By LabMedica International staff writers Posted on 20 Jun 2016 |

Image: Assay principles: Unpurified PCR product is added to a micro well containing probe-conjugated microbeads. A wild-type target hybridizes efficiently to both probes, inducing bead aggregation. Hybridization of a mutant target to the discriminating probe is unfavorable; therefore, the beads remain dispersed. An image of each micro well is obtained and processed to generate a saturation value corresponding to the extent of aggregation (Photo courtesy of The Journal of Molecular Diagnostics).
A recent paper described a rapid and inexpensive method for detecting KRAS mutations in clinical biopsy specimens of lung and colorectal cancers.
KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for selecting appropriate treatment. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation.
Investigators at the University of Virginia (Charlottesville, USA) recently described a method that uses hybridization-induced aggregation (HIA) technology for mutation detection (HIAMD), which enables the detection of common KRAS mutations in less than 10 minutes following PCR amplification.
The method is an extension of hybridization-induced aggregation (HIA) technology, whereby the hybridization of a specific DNA target to a pair of oligonucleotide probes immobilized on the surface of microbeads, tethers the microbeads together and induces aggregation. A digital image of the hybridization micro well is used for quantifying the extent of aggregation in terms of image saturation, which allows for a quantitative representation of hybridization efficiency.
The HIAMD method uses samples processed according to current clinical protocols and is compatible with the clinical laboratory workflow for sample preparation, which includes nucleic acid extraction and PCR amplification. After amplification, HIAMD analysis for the detection of all common KRAS mutations (located in codons 12 and 13) is complete in less than10 minutes, which includes approximately three minutes for thermal denaturation and snap-cool, approximately one minute for pipetting the reagents (sample, buffer, and beads) onto the chip, two minutes for the hybridization assay, and approximately three minutes for image analysis. Sequencing analysis, on the other hand, requires further sample preparation, including a tedious PCR cleanup step, and has a turnaround time in the order of days. The simple instrumentation needed for HIAMD keeps the method very low in cost (approximately 2500 USD for all equipment, compared to approximately 100,000 USD for sequencing instrumentation).
The investigators evaluated the clinical utility of the HIAMD method for the analysis of 20 lung and colon tumor pathology specimens. They observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and by classical sequencing. In addition, they were able to detect KRAS mutations in a background of 75% wild-type DNA—a finding consistent with that reported for sequencing.
"These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing," said senior author Dr. Kimberly A. Kelly, professor of biomedical engineering at the University of Virginia. "Importantly, the analysis is performed in a manner that is both rapid and cost effective. The current direction of clinical oncology research suggests that a technology such as HIAMD will continue to be a highly relevant and valued analytical tool for the facilitation of individualized therapeutic strategies, and the successes here indicate the potential to apply this technology for the routine analysis of other important genetic markers."
"Targeted therapies are a growing trend in basic and clinical cancer research, and for good reason - the potential for improved treatment outcomes and cost savings is tremendous," said Dr. Kelly. "However, the effective implementation of a targeted therapeutic regime requires a practical means for preemptive molecular characterization of the cancer. In an effort to fulfill the unmet clinical demand for a methodology amenable to the requirements of routine testing, we developed a novel approach that provides simple, rapid, and inexpensive detection of point mutations."
The paper was published in the June 8, 2016, online edition of The Journal of Molecular Diagnostics.
Related Links:
University of Virginia
KRAS mutations have emerged as powerful predictors of response to targeted therapies in the treatment of lung and colorectal cancers; thus, prospective KRAS genotyping is essential for selecting appropriate treatment. Conventional mutation testing technologies are not ideal for routine clinical screening, as they often involve complex, time-consuming processes and/or costly instrumentation.
Investigators at the University of Virginia (Charlottesville, USA) recently described a method that uses hybridization-induced aggregation (HIA) technology for mutation detection (HIAMD), which enables the detection of common KRAS mutations in less than 10 minutes following PCR amplification.
The method is an extension of hybridization-induced aggregation (HIA) technology, whereby the hybridization of a specific DNA target to a pair of oligonucleotide probes immobilized on the surface of microbeads, tethers the microbeads together and induces aggregation. A digital image of the hybridization micro well is used for quantifying the extent of aggregation in terms of image saturation, which allows for a quantitative representation of hybridization efficiency.
The HIAMD method uses samples processed according to current clinical protocols and is compatible with the clinical laboratory workflow for sample preparation, which includes nucleic acid extraction and PCR amplification. After amplification, HIAMD analysis for the detection of all common KRAS mutations (located in codons 12 and 13) is complete in less than10 minutes, which includes approximately three minutes for thermal denaturation and snap-cool, approximately one minute for pipetting the reagents (sample, buffer, and beads) onto the chip, two minutes for the hybridization assay, and approximately three minutes for image analysis. Sequencing analysis, on the other hand, requires further sample preparation, including a tedious PCR cleanup step, and has a turnaround time in the order of days. The simple instrumentation needed for HIAMD keeps the method very low in cost (approximately 2500 USD for all equipment, compared to approximately 100,000 USD for sequencing instrumentation).
The investigators evaluated the clinical utility of the HIAMD method for the analysis of 20 lung and colon tumor pathology specimens. They observed a 100% correlation between the KRAS mutation statuses determined by HIAMD and by classical sequencing. In addition, they were able to detect KRAS mutations in a background of 75% wild-type DNA—a finding consistent with that reported for sequencing.
"These results indicate the validity of HIAMD as a mutation-testing technology suitable for practical clinical testing," said senior author Dr. Kimberly A. Kelly, professor of biomedical engineering at the University of Virginia. "Importantly, the analysis is performed in a manner that is both rapid and cost effective. The current direction of clinical oncology research suggests that a technology such as HIAMD will continue to be a highly relevant and valued analytical tool for the facilitation of individualized therapeutic strategies, and the successes here indicate the potential to apply this technology for the routine analysis of other important genetic markers."
"Targeted therapies are a growing trend in basic and clinical cancer research, and for good reason - the potential for improved treatment outcomes and cost savings is tremendous," said Dr. Kelly. "However, the effective implementation of a targeted therapeutic regime requires a practical means for preemptive molecular characterization of the cancer. In an effort to fulfill the unmet clinical demand for a methodology amenable to the requirements of routine testing, we developed a novel approach that provides simple, rapid, and inexpensive detection of point mutations."
The paper was published in the June 8, 2016, online edition of The Journal of Molecular Diagnostics.
Related Links:
University of Virginia
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







