LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

New Gene Associated With Familial High Cholesterol

By LabMedica International staff writers
Posted on 26 May 2016
Image: Clinical manifestation of Homozygous Familial Hypercholesterolemia, interdigital xanthoma (Photo courtesy of the National Organization for Rare Disorders).
Image: Clinical manifestation of Homozygous Familial Hypercholesterolemia, interdigital xanthoma (Photo courtesy of the National Organization for Rare Disorders).
The gene that explains one quarter of all familial hypercholesterolemia with very high blood cholesterol has been revealed. Familial hypercholesterolemia is the most common genetic disorder leading to premature death, found in 1 in 200 people.

The reason why lipoprotein(a) concentrations are raised in individuals with clinical familial hypercholesterolemia is unclear. The hypotheses that high lipoprotein(a) cholesterol and LPA risk genotypes are a possible cause of clinical familial hypercholesterolemia, and that individuals with both high lipoprotein(a) concentrations and clinical familial hypercholesterolemia have the highest risk of myocardial infarction.

Scientists at the Copenhagen University Hospital (Herlev, Denmark) carried out a prospective cohort study that included data from 46,200 individuals from the Copenhagen General Population Study who had lipoprotein(a) measurements and were genotyped for common familial hypercholesterolemia mutations. Individuals receiving cholesterol-lowering drugs had their concentrations of Low-density lipoprotein (LDL) and total cholesterol multiplied by 1·43, corresponding to an estimated 30% reduction in LDL cholesterol from the treatment. In lipoprotein(a) cholesterol-adjusted analyses, total cholesterol and LDL cholesterol were adjusted for the lipoprotein(a) cholesterol content by subtracting 30% of the individuals' lipoprotein(a) total mass before total and LDL cholesterol were used for diagnosis of clinical familial hypercholesterolemia.

The team used unadjusted LDL cholesterol, mean lipoprotein(a) concentrations were 23 mg/dL in individuals unlikely to have familial hypercholesterolemia, 32 mg/dL in those with possible familial hypercholesterolemia, and 35 mg/dL in those with probable or definite familial hypercholesterolemia. When adjusting LDL cholesterol for lipoprotein(a) cholesterol content the corresponding values were 24 mg/dL for individuals unlikely to have familial hypercholesterolemia, 22 mg/dL for those with possible familial hypercholesterolemia, and 21 mg/dL for those with probable or definite familial hypercholesterolemia. High lipoprotein(a) cholesterol accounted for a quarter of all individuals diagnosed with clinical familial hypercholesterolemia and LPA risk genotypes were more frequent in clinical familial hypercholesterolemia, whereas lipoprotein(a) concentrations were similar in those with and without familial hypercholesterolemia mutations.

Borge G. Nordestgaard, MD, a professor and the senior author of the study, said, “Our results suggest that all individuals with familial hypercholesterolemia should have their lipoprotein(a) concentrations measured in order to identify those with the highest concentrations and therefore also the highest risk of suffering a heart attack. Our findings will help identify the individuals with the highest risk of suffering a heart attack and hopefully facilitate better preventive treatment for these extremely high risk individuals.” The study was published on May 12, 2016, in the journal The Lancet Diabetes & Endocrinology.

Related Links:
Copenhagen University Hospital

New
Gold Member
Clinical Drug Testing Panel
DOA Urine MultiPlex
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Autoimmune Liver Diseases Assay
Microblot-Array Liver Profile Kit

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more