LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Palm-Sized Device Quickly Detects Ebola Virus

By LabMedica International staff writers
Posted on 18 May 2016
Image: The handheld device that can detect Ebola Virus Ribonucleic Acid (Photo courtesy of KIST Europe).
Image: The handheld device that can detect Ebola Virus Ribonucleic Acid (Photo courtesy of KIST Europe).
The gold standard method for identifying the Ebola virus in a blood sample requires packaging samples in cooled containers and sending them to specialized laboratories, often far away from where patients live.

These laboratories use a method called reverse-transcription polymerase chain reaction, or RT-PCR, to check for the virus. The prolonged testing process delays detection, treatment and real-time monitoring of viral loads in body fluids that can harbor the virus even after it is no longer detected in the blood.

Scientists at the Korea Institute of Science and Technology Europe (KIST, Saarbrücken, Germany) and their colleagues have designed and tested an instrument, which could simultaneously perform four RT-PCRs that included two controls and two patient blood samples. Conventional tests require several hours to more than a day for results to come in. The new process was completed in slightly over 30 minutes. The amount of blood required was 100 nL and could potentially come from just a finger prick.

The device was shown to concurrently perform four PCRs, one positive control with both Ebola and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) RNA and one negative control. The device successfully detected the Ebola ribonucleic acid (RNA). In addition to diagnosing the illness, the test also yielded information about how many RNA copies each sample contained. In addition to diagnosing the illness, the experts say that the tool could also potentially help health care workers track patients' viral loads in semen, breast milk and eye fluids after recovery.

A comparison of threshold cycles (CT) from the two samples provided relative quantification. The entire process, which consisted of reverse transcription, PCR amplification, and melting curve analysis (MCA), was conducted in less than 37 min. The next step will be integration with a sample preparation unit to form an integrated sample-to-answer system for point-of-care infectious disease diagnostics. The study was published on April 11, 2016, in the journal Analytical Chemistry.

Related Links:
Korea Institute of Science and Technology Europe


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more