Growth and Spread of Breast Cancer Linked to Tumor Cells' Expression of a Cartilage Protein
|
By LabMedica International staff writers Posted on 27 Apr 2016 |

Image: High expression of COMP in breast cancer cells, seen here in brown, was associated with poor clinical prognosis for the patient. Cancer cells expressing COMP became more invasive and changed their metabolism, which allowed them to survive better and spread to other organs (Photo courtesy of Dr. Anna Blom, Lund University).
A team of Swedish cancer researchers has identified a protein in breast tumors and surrounding stromal tissue that contributes to the development and spread of the disease.
Investigators at Lund University (Malmö, Sweden) using tissue microarrays derived from two cohorts of patients with breast cancer found that the protein COMP (cartilage oligomeric matrix protein), a soluble pentameric protein expressed in cartilage and involved in collagen organization, was expressed to a varying degree in the tumor cells and surrounding stroma. High levels of COMP in tumor cells correlated, independently of other variables, with poor survival and decreased recurrence-free survival. Normal breast tissue did not express detectable levels of COMP.
The investigators injected MDA-MB-231breast cancer cells that stably expressed COMP into the mammary fat pads of SCID (CB-17/Icr-Prkdcscid/Rj) mice. They reported in the April 11, 2016, online edition of the journal Oncogene that tumors expressing COMP were significantly larger and were more prone to metastasize as compared with control tumors that did not express the protein.
In vitro experiments confirmed that COMP-expressing cells had a more invasive phenotype, which could in part be attributed to an upregulation of the enzyme matrix metalloprotease-9. Microarray analyses of gene expression in tumors formed in vivo showed that COMP expression induced higher expression of genes protecting against endoplasmic reticulum stress. Furthermore, in vitro measurement of cell respiration indicated that COMP-expressing cells appeared to undergo a metabolic switch, that is, a Warburg effect, in which they produced energy by a high rate of glycolysis followed by lactic acid fermentation in the cytosol, rather than by a comparatively low rate of glycolysis followed by oxidation of pyruvate in mitochondria as in most normal cells.
Based on these results, the investigators concluded that COMP was a novel biomarker in breast cancer, which contributed to the severity of the disease by metabolic switching and increasing invasiveness and tumor cell viability, leading to reduced survival in animal models and human patients.
"We saw a clear association between high levels of COMP and a worse breast cancer prognosis. With more research, COMP has the potential of becoming an indicator of aggressive breast cancer, and thereby providing early and valuable information before deciding on an appropriate treatment," said senior author Dr. Anna Blom, professor of protein chemistry at Lund University.
Related Links:
Lund University
Investigators at Lund University (Malmö, Sweden) using tissue microarrays derived from two cohorts of patients with breast cancer found that the protein COMP (cartilage oligomeric matrix protein), a soluble pentameric protein expressed in cartilage and involved in collagen organization, was expressed to a varying degree in the tumor cells and surrounding stroma. High levels of COMP in tumor cells correlated, independently of other variables, with poor survival and decreased recurrence-free survival. Normal breast tissue did not express detectable levels of COMP.
The investigators injected MDA-MB-231breast cancer cells that stably expressed COMP into the mammary fat pads of SCID (CB-17/Icr-Prkdcscid/Rj) mice. They reported in the April 11, 2016, online edition of the journal Oncogene that tumors expressing COMP were significantly larger and were more prone to metastasize as compared with control tumors that did not express the protein.
In vitro experiments confirmed that COMP-expressing cells had a more invasive phenotype, which could in part be attributed to an upregulation of the enzyme matrix metalloprotease-9. Microarray analyses of gene expression in tumors formed in vivo showed that COMP expression induced higher expression of genes protecting against endoplasmic reticulum stress. Furthermore, in vitro measurement of cell respiration indicated that COMP-expressing cells appeared to undergo a metabolic switch, that is, a Warburg effect, in which they produced energy by a high rate of glycolysis followed by lactic acid fermentation in the cytosol, rather than by a comparatively low rate of glycolysis followed by oxidation of pyruvate in mitochondria as in most normal cells.
Based on these results, the investigators concluded that COMP was a novel biomarker in breast cancer, which contributed to the severity of the disease by metabolic switching and increasing invasiveness and tumor cell viability, leading to reduced survival in animal models and human patients.
"We saw a clear association between high levels of COMP and a worse breast cancer prognosis. With more research, COMP has the potential of becoming an indicator of aggressive breast cancer, and thereby providing early and valuable information before deciding on an appropriate treatment," said senior author Dr. Anna Blom, professor of protein chemistry at Lund University.
Related Links:
Lund University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Mismatch Between Two Common Kidney Function Tests Indicates Serious Health Problems
Creatinine has long been the standard for measuring kidney filtration, while cystatin C — a protein produced by all human cells — has been recommended as a complementary marker because it is influenced... Read more
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read moreMolecular Diagnostics
view channel
Hidden Blood Biomarkers to Revolutionize Diagnosis of Diabetic Kidney Disease
Diabetic kidney disease often develops silently, and many patients are diagnosed only after irreversible damage has occurred. Late diagnosis frequently leads to complications affecting the kidneys, heart,... Read more
Genetic Testing Trifecta Predicts Risk of Sudden Cardiac Death and Arrhythmia
Arrhythmias such as atrial fibrillation and sudden cardiac death can develop with few early symptoms, exposing patients to serious complications before treatment begins. Existing genetic tests capture... Read moreHematology
view channel
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
Simple Optical Microscopy Method Reveals Hidden Structures in Remarkable Detail
Understanding how microscopic fibers are organized in human tissues is key to revealing how organs function and how diseases disrupt them. However, these fiber networks have remained difficult to visualize... Read more
Hydrogel-Based Technology Isolates Extracellular Vesicles for Early Disease Diagnosis
Isolating extracellular vesicles (EVs) from biological fluids is essential for early diagnosis, therapeutic development, and precision medicine. However, traditional EV-isolation methods rely on ultra... Read moreTechnology
view channel
AI Saliva Sensor Enables Early Detection of Head and Neck Cancer
Early detection of head and neck cancer remains difficult because the disease produces few or no symptoms in its earliest stages, and lesions often lie deep within the head or neck, where biopsy or endoscopy... Read more
AI-Powered Biosensor Technology to Enable Breath Test for Lung Cancer Detection
Detecting lung cancer early remains one of the biggest challenges in oncology, largely because current tools are invasive, expensive, or unable to identify the disease in its earliest phases.... Read moreIndustry
view channel
Roche and Freenome Collaborate to Develop Cancer Screening Tests
Roche (Basel, Switzerland) and Freenome (Brisbane, CA, USA have entered into a strategic collaboration to commercialize Freenome's cancer screening technology in international markets.... Read more








