Growth and Spread of Breast Cancer Linked to Tumor Cells' Expression of a Cartilage Protein
|
By LabMedica International staff writers Posted on 27 Apr 2016 |

Image: High expression of COMP in breast cancer cells, seen here in brown, was associated with poor clinical prognosis for the patient. Cancer cells expressing COMP became more invasive and changed their metabolism, which allowed them to survive better and spread to other organs (Photo courtesy of Dr. Anna Blom, Lund University).
A team of Swedish cancer researchers has identified a protein in breast tumors and surrounding stromal tissue that contributes to the development and spread of the disease.
Investigators at Lund University (Malmö, Sweden) using tissue microarrays derived from two cohorts of patients with breast cancer found that the protein COMP (cartilage oligomeric matrix protein), a soluble pentameric protein expressed in cartilage and involved in collagen organization, was expressed to a varying degree in the tumor cells and surrounding stroma. High levels of COMP in tumor cells correlated, independently of other variables, with poor survival and decreased recurrence-free survival. Normal breast tissue did not express detectable levels of COMP.
The investigators injected MDA-MB-231breast cancer cells that stably expressed COMP into the mammary fat pads of SCID (CB-17/Icr-Prkdcscid/Rj) mice. They reported in the April 11, 2016, online edition of the journal Oncogene that tumors expressing COMP were significantly larger and were more prone to metastasize as compared with control tumors that did not express the protein.
In vitro experiments confirmed that COMP-expressing cells had a more invasive phenotype, which could in part be attributed to an upregulation of the enzyme matrix metalloprotease-9. Microarray analyses of gene expression in tumors formed in vivo showed that COMP expression induced higher expression of genes protecting against endoplasmic reticulum stress. Furthermore, in vitro measurement of cell respiration indicated that COMP-expressing cells appeared to undergo a metabolic switch, that is, a Warburg effect, in which they produced energy by a high rate of glycolysis followed by lactic acid fermentation in the cytosol, rather than by a comparatively low rate of glycolysis followed by oxidation of pyruvate in mitochondria as in most normal cells.
Based on these results, the investigators concluded that COMP was a novel biomarker in breast cancer, which contributed to the severity of the disease by metabolic switching and increasing invasiveness and tumor cell viability, leading to reduced survival in animal models and human patients.
"We saw a clear association between high levels of COMP and a worse breast cancer prognosis. With more research, COMP has the potential of becoming an indicator of aggressive breast cancer, and thereby providing early and valuable information before deciding on an appropriate treatment," said senior author Dr. Anna Blom, professor of protein chemistry at Lund University.
Related Links:
Lund University
Investigators at Lund University (Malmö, Sweden) using tissue microarrays derived from two cohorts of patients with breast cancer found that the protein COMP (cartilage oligomeric matrix protein), a soluble pentameric protein expressed in cartilage and involved in collagen organization, was expressed to a varying degree in the tumor cells and surrounding stroma. High levels of COMP in tumor cells correlated, independently of other variables, with poor survival and decreased recurrence-free survival. Normal breast tissue did not express detectable levels of COMP.
The investigators injected MDA-MB-231breast cancer cells that stably expressed COMP into the mammary fat pads of SCID (CB-17/Icr-Prkdcscid/Rj) mice. They reported in the April 11, 2016, online edition of the journal Oncogene that tumors expressing COMP were significantly larger and were more prone to metastasize as compared with control tumors that did not express the protein.
In vitro experiments confirmed that COMP-expressing cells had a more invasive phenotype, which could in part be attributed to an upregulation of the enzyme matrix metalloprotease-9. Microarray analyses of gene expression in tumors formed in vivo showed that COMP expression induced higher expression of genes protecting against endoplasmic reticulum stress. Furthermore, in vitro measurement of cell respiration indicated that COMP-expressing cells appeared to undergo a metabolic switch, that is, a Warburg effect, in which they produced energy by a high rate of glycolysis followed by lactic acid fermentation in the cytosol, rather than by a comparatively low rate of glycolysis followed by oxidation of pyruvate in mitochondria as in most normal cells.
Based on these results, the investigators concluded that COMP was a novel biomarker in breast cancer, which contributed to the severity of the disease by metabolic switching and increasing invasiveness and tumor cell viability, leading to reduced survival in animal models and human patients.
"We saw a clear association between high levels of COMP and a worse breast cancer prognosis. With more research, COMP has the potential of becoming an indicator of aggressive breast cancer, and thereby providing early and valuable information before deciding on an appropriate treatment," said senior author Dr. Anna Blom, professor of protein chemistry at Lund University.
Related Links:
Lund University
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Urine Test Detects Early Stage Pancreatic Cancer
Pancreatic cancer remains among the hardest cancers to detect early. In the UK, around 10,000 people are diagnosed each year, but only 5% survive beyond five years. Late diagnosis is a major factor—more... Read more
Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more








