Novel Biochip Combines Antibody Binding and Electronic Counting to Simplify Diagnosis of HIV/AIDS
|
By LabMedica International staff writers Posted on 20 Mar 2016 |

Image: Close-up of the differential immuno-capture biochip (Photo courtesy of Dr. Umer Hassan, University of Illinois).
A recent paper described the construction of a microchip biosensor that uses immuno-capture technology to detect sub-populations of immune leukocytes.
Investigators at the University of Illinois (Urbana-Champaign, USA) developed the small, disposable biochip in order to differentiate and count CD4+ and CD8+ T-cells, which is a key factor in diagnosing HIV/AIDS.
The prototype biochip is built around a capture chamber coated with anti-CD4+ antibodies. In addition, it has separate ports for lysing reagents and quenching buffers that preserve the leukocytes for counting by co-planar platinum microfabricated electrodes.
In practice, ten microliters of whole blood was infused into the biochip. The red cells were removed by lysis, and leukocytes were preserved using quenching buffers. The leukocytes were counted while passing over a counting device comprising co-planar platinum microfabricated electrodes on the way into the capture chamber. CD4+ T-cells were captured as they interacted with specific antibodies in the capture chamber. Leukocytes that were not captured passed out of the capture chamber and were counted again with a second counter. The difference in the respective cell counts gave the number of cells captured.
While this paper provided a comprehensive stepwise protocol to replicate the biosensor for CD4+ and CD8+ cell counts, the biochip could be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies. Capture of other specific cells would require immobilization of their corresponding antibodies within the capture chamber.
In clinical trials, the differential immuno-capture biochip achieved more than 90% correlation with flow cytometry for both CD4+ and CD8+ T-cells using HIV infected blood samples.
Production of the prototype biochip required approximately 24 hours. A one-time optimization of the cell capture step took six to nine hours, and the final cell counting experiment required 30 minutes to complete.
"An important diagnostic biomarker for HIV/AIDS is the absolute count of the CD4+ and CD8+ T lymphocytes in the whole blood. The current diagnostic tool—a flow cytometer—is expensive, requires large blood volume, and a trained technician to operate," said senior author Dr. Rashid Bashir, professor of bioengineering at the University of Illinois. "We have developed a microfluidic biosensor based on a differential immuno-capture electrical cell counting technology to enumerate specific cells in 20 minutes using 10 microliters of blood."
The biochip protocol was published in the March 10, 2016, online edition of the journal Nature Protocols.
Related Links:
University of Illinois
Investigators at the University of Illinois (Urbana-Champaign, USA) developed the small, disposable biochip in order to differentiate and count CD4+ and CD8+ T-cells, which is a key factor in diagnosing HIV/AIDS.
The prototype biochip is built around a capture chamber coated with anti-CD4+ antibodies. In addition, it has separate ports for lysing reagents and quenching buffers that preserve the leukocytes for counting by co-planar platinum microfabricated electrodes.
In practice, ten microliters of whole blood was infused into the biochip. The red cells were removed by lysis, and leukocytes were preserved using quenching buffers. The leukocytes were counted while passing over a counting device comprising co-planar platinum microfabricated electrodes on the way into the capture chamber. CD4+ T-cells were captured as they interacted with specific antibodies in the capture chamber. Leukocytes that were not captured passed out of the capture chamber and were counted again with a second counter. The difference in the respective cell counts gave the number of cells captured.
While this paper provided a comprehensive stepwise protocol to replicate the biosensor for CD4+ and CD8+ cell counts, the biochip could be adapted to enumerate other specific cell types such as somatic cells or cells from tissue or liquid biopsies. Capture of other specific cells would require immobilization of their corresponding antibodies within the capture chamber.
In clinical trials, the differential immuno-capture biochip achieved more than 90% correlation with flow cytometry for both CD4+ and CD8+ T-cells using HIV infected blood samples.
Production of the prototype biochip required approximately 24 hours. A one-time optimization of the cell capture step took six to nine hours, and the final cell counting experiment required 30 minutes to complete.
"An important diagnostic biomarker for HIV/AIDS is the absolute count of the CD4+ and CD8+ T lymphocytes in the whole blood. The current diagnostic tool—a flow cytometer—is expensive, requires large blood volume, and a trained technician to operate," said senior author Dr. Rashid Bashir, professor of bioengineering at the University of Illinois. "We have developed a microfluidic biosensor based on a differential immuno-capture electrical cell counting technology to enumerate specific cells in 20 minutes using 10 microliters of blood."
The biochip protocol was published in the March 10, 2016, online edition of the journal Nature Protocols.
Related Links:
University of Illinois
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







