LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Lipidomics Method Could Bring Fast Cancer Diagnosis

By LabMedica International staff writers
Posted on 08 Mar 2016
Image: The benchtop miniature mass spectrometer system, Mini 12, with ambient ionization source and tandem mass spectrometry capabilities (Photo courtesy of Purdue University).
Image: The benchtop miniature mass spectrometer system, Mini 12, with ambient ionization source and tandem mass spectrometry capabilities (Photo courtesy of Purdue University).
The field of lipidomics has been significantly advanced by mass spectrometric analysis, but the distinction and quantitation of the unsaturated lipid isomers, however, remain a long-standing challenge.

A new analytical tool for medical applications might be used to diagnose cancer more rapidly than conventional methods and has implications for the field of lipidomics, which involves the identification and quantification of cellular lipid molecules, how they interact with other components in cells and their role in biological systems.

Scientists at Purdue University (West Lafayette, IN, USA) and their colleagues developed a new approach to easily pinpoint the location of double bonds between carbon atoms in lipid molecules, allowing the identification of "isomers," a capability that could lead to the early diagnosis of cancer. Lipids are important components of living cells and include fats, oils and waxes. They may exist as isomers, which have identical mass but possess subtle structural differences not easily detected by conventional analytical technologies. The new tool uses techniques called tandem mass spectrometry and the Paternò-Büchi reaction.

In tandem mass spectrometry, charged molecules are fragmented into pieces, which are then measured and identified by their mass. A so-called "shotgun lipidomics" analysis enhanced by the Paternò-Büchi photochemical reaction, which modifies double bonds into rings that can then be easily cleaved into two parts. This allows the bonds to be measured and identified using mass spectrometry. The method can be completed within hours, starting with small amounts of tissue, tens of milligrams, compared to weeks and hundreds of milligrams using conventional analytical techniques.

Although the study was conducted using a conventional laboratory mass spectrometer, the same operation could be carried out with a new miniature mass spectrometer. Whereas conventional mass spectrometers are relatively heavy, bulky instruments, Purdue scientists have recently developed miniature mass spectrometers, including the Mini 12, (PURSPEC Technologies Inc.; West Lafayette, IN, USA) which weighs 18 kg, is 31.8 cm wide and 40.6 cm high. The system was used to identify 96 unsaturated fatty acids and glycerophospholipids in the brain tissue of rats, revealing that 50% of the lipids were mixtures of isomers characterized by the location of their carbon-carbon double bonds.

Zheng Ouyang, PhD, a professor and coauthor of the study, said, “Direct analysis using ambient sampling methods will further speed up the analysis process from hours to a minute. We want to apply this to imaging to study tissue, and we currently are integrating this method into miniature mass spectrometry systems. Eventually we hope to have biologists and medical professionals using it.” The study was published on February 22, 2016, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:

Purdue University
PURSPEC Technologies Inc. 


Gold Member
Hybrid Pipette
SWITCH
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Automatic CLIA Analyzer
Shine i9000

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more