Protein Identified That Boosts Brain Tumor Resistance to Chemotherapy
|
By LabMedica International staff writers Posted on 26 Jan 2016 |

Image: Space-filling model of the anticancer drug temozolomide (Photo courtesy of Wikimedia Commons).
Cancer researchers have linked development of resistance to the anticancer drug temozolomide by glioblastoma multiforme (GBM) brain cancer cells to the activity of the RhoG-specific guanine nucleotide exchange factor protein SGEF.
GBM is the highest grade and most common form of primary adult brain tumors. Despite surgical removal followed by concomitant radiation and chemotherapy with the alkylating agent temozolomide (TMZ), GBM tumors develop treatment resistance and ultimately recur. Impaired response to treatment occurs rapidly, conferring a median survival of just fifteen months. Thus, researchers are seeking to identify the genetic and signaling mechanisms that promote tumor resistance in order to develop targeted therapies to combat this refractory disease.
The therapeutic benefit of TMZ depends on its ability to alkylate/methylate DNA, which most often occurs at the N-7 or O-6 positions of guanine residues. This methylation damages the DNA and triggers the death of tumor cells. However, some tumor cells are able to repair this type of DNA damage, and therefore diminish the therapeutic efficacy of TMZ, by expressing the protein O6-alkylguanine DNA alkyltransferase (AGT) encoded in humans by the O-6-methylguanine-DNA methyltransferase (MGMT) gene. In some tumors, epigenetic silencing of the MGMT gene prevents the synthesis of this enzyme, and as a consequence such tumors are more sensitive to killing by TMZ. Conversely, the presence of AGT protein in brain tumors predicts poor response to TMZ and these patients receive little benefit from chemotherapy with this drug.
Previous studies have shown that SGEF (Src homology 3 domain-containing guanine nucleotide exchange factor) was overexpressed in GBM tumors and played a role in promoting TWEAK-Fn14–mediated glioma invasion. TWEAK is a multifunctional cytokine that controls many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK acts by binding to Fn14, a highly inducible cell-surface receptor that is linked to several intracellular signaling pathways, including the nuclear factor-kappaB (NF-kappaB) pathway. The TWEAK–Fn14 axis normally regulates various physiological processes; in particular it seems to play an important, beneficial role in tissue repair following acute injury. Furthermore, recent studies have indicated that TWEAK–Fn14 axis signaling may contribute to cancer, chronic autoimmune diseases, and acute ischemic stroke.
Investigators at The Translational Genomics Research Institute (Phoenix, AZ, USA) reported in the January 13, 2016, online edition of the journal Molecular Cancer Research that SGEF expression was upregulated by TWEAK-Fn14 signaling via NF-kappaB activity while shRNA (short hairpin RNA)-mediated reduction of SGEF expression sensitized glioma cells to temozolomide-induced apoptosis and suppressed colony formation following temozolomide treatment.
Nuclear SGEF was activated following temozolomide exposure and formed complexes with the DNA damage repair protein BRCA1 (breast cancer 1), which enabled tumor cells to rapidly repair the damaged DNA that otherwise would lead to cell death. In contrast, BRCA1 phosphorylation in response to temozolomide treatment was hindered by inhibition of SGEF.
"We need to identify the genetic and cellular-pathway signaling mechanisms that make brain tumors resistant to treatment," said senior author Dr. Nhan Tran, head of the central nervous system tumor research laboratory at The Translational Genomics Research Institute. "And the role of SGEF in promoting chemotherapeutic resistance highlights this previously unappreciated protein. Importantly, this also suggests that SGEF could be a new candidate for development of targeted therapeutics."
Related Links:
The Translational Genomics Research Institute
GBM is the highest grade and most common form of primary adult brain tumors. Despite surgical removal followed by concomitant radiation and chemotherapy with the alkylating agent temozolomide (TMZ), GBM tumors develop treatment resistance and ultimately recur. Impaired response to treatment occurs rapidly, conferring a median survival of just fifteen months. Thus, researchers are seeking to identify the genetic and signaling mechanisms that promote tumor resistance in order to develop targeted therapies to combat this refractory disease.
The therapeutic benefit of TMZ depends on its ability to alkylate/methylate DNA, which most often occurs at the N-7 or O-6 positions of guanine residues. This methylation damages the DNA and triggers the death of tumor cells. However, some tumor cells are able to repair this type of DNA damage, and therefore diminish the therapeutic efficacy of TMZ, by expressing the protein O6-alkylguanine DNA alkyltransferase (AGT) encoded in humans by the O-6-methylguanine-DNA methyltransferase (MGMT) gene. In some tumors, epigenetic silencing of the MGMT gene prevents the synthesis of this enzyme, and as a consequence such tumors are more sensitive to killing by TMZ. Conversely, the presence of AGT protein in brain tumors predicts poor response to TMZ and these patients receive little benefit from chemotherapy with this drug.
Previous studies have shown that SGEF (Src homology 3 domain-containing guanine nucleotide exchange factor) was overexpressed in GBM tumors and played a role in promoting TWEAK-Fn14–mediated glioma invasion. TWEAK is a multifunctional cytokine that controls many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. TWEAK acts by binding to Fn14, a highly inducible cell-surface receptor that is linked to several intracellular signaling pathways, including the nuclear factor-kappaB (NF-kappaB) pathway. The TWEAK–Fn14 axis normally regulates various physiological processes; in particular it seems to play an important, beneficial role in tissue repair following acute injury. Furthermore, recent studies have indicated that TWEAK–Fn14 axis signaling may contribute to cancer, chronic autoimmune diseases, and acute ischemic stroke.
Investigators at The Translational Genomics Research Institute (Phoenix, AZ, USA) reported in the January 13, 2016, online edition of the journal Molecular Cancer Research that SGEF expression was upregulated by TWEAK-Fn14 signaling via NF-kappaB activity while shRNA (short hairpin RNA)-mediated reduction of SGEF expression sensitized glioma cells to temozolomide-induced apoptosis and suppressed colony formation following temozolomide treatment.
Nuclear SGEF was activated following temozolomide exposure and formed complexes with the DNA damage repair protein BRCA1 (breast cancer 1), which enabled tumor cells to rapidly repair the damaged DNA that otherwise would lead to cell death. In contrast, BRCA1 phosphorylation in response to temozolomide treatment was hindered by inhibition of SGEF.
"We need to identify the genetic and cellular-pathway signaling mechanisms that make brain tumors resistant to treatment," said senior author Dr. Nhan Tran, head of the central nervous system tumor research laboratory at The Translational Genomics Research Institute. "And the role of SGEF in promoting chemotherapeutic resistance highlights this previously unappreciated protein. Importantly, this also suggests that SGEF could be a new candidate for development of targeted therapeutics."
Related Links:
The Translational Genomics Research Institute
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
New Biomarker Panel to Improve Heart Failure Diagnosis in Women
Heart failure affects millions worldwide, yet many women are still misdiagnosed or diagnosed too late. Although heart failure broadly means the heart cannot pump enough blood to the body’s cells, its two... Read more
Dual Blood Biomarkers Improve ALS Diagnostic Accuracy
Diagnosing amyotrophic lateral sclerosis (ALS) remains difficult even with advanced imaging and genetic tools, especially when clinicians must distinguish it from other neurodegenerative conditions that... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
15-Minute Blood Test Diagnoses Life-Threatening Infections in Children
Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read morePathology
view channel
AI Tool Improves Accuracy of Skin Cancer Detection
Diagnosing melanoma accurately in people with darker skin remains a longstanding challenge. Many existing artificial intelligence (AI) tools detect skin cancer more reliably in lighter skin tones, often... Read more
Highly Sensitive Imaging Technique Detects Myelin Damage
Damage to myelin—the insulating layer that helps brain cells function efficiently—is a hallmark of many neurodegenerative diseases, age-related decline, and traumatic injuries. However, studying this damage... Read moreTechnology
view channel
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Co-Diagnostics Forms New Business Unit to Develop AI-Powered Diagnostics
Co-Diagnostics, Inc. (Salt Lake City, UT, USA) has formed a new artificial intelligence (AI) business unit to integrate the company's existing and planned AI applications into its Co-Dx Primer Ai platform.... Read more








