LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Differential Gene Expression Aids Disseminated Tumor Cells Adapt to Diverse Microenvironments

By LabMedica International staff writers
Posted on 09 Nov 2015
Image: A space-filling model of the PTEN protein (blue) complexed with tartaric acid (brown) (Photo courtesy of Wikimedia Commons).
Image: A space-filling model of the PTEN protein (blue) complexed with tartaric acid (brown) (Photo courtesy of Wikimedia Commons).
A recent paper described how cancer cells that have broken away from a primary tumor are able to establish the conditions they need to survive in a distant site that possesses a quite different microenvironment.

Investigators at the University of Notre Dame (South Bend, IN, USA) and at the University of Texas MD Anderson Cancer Center (Houston, USA) reported in the October 19, 2015, online edition of the journal Nature that the ability of disseminated tumor cells to establish themselves in distant locations was dependent on expressing or silencing the tumor suppressor gene PTEN.

PTEN (phosphatase and tensin homolog) is one of the most commonly lost tumor suppressors in human cancer. During tumor development, mutations and deletions of PTEN occur that inactivate its enzymatic activity leading to increased cell proliferation and reduced cell death. Frequent genetic inactivation of PTEN occurs in glioblastoma, endometrial cancer, prostate cancer, and reduced expression is found in many other tumor types such as lung and breast cancer. When the PTEN enzyme is functioning properly, it acts as part of a chemical pathway that signals cells to stop dividing and causes cells to undergo programmed cell death (apoptosis) when necessary. These functions prevent uncontrolled cell growth that can lead to the formation of tumors. There is also evidence that the protein made by the PTEN gene may play a role in both cell movement and adhesion of cells to surrounding tissues.

The investigators found that both human and mouse tumor cells with normal expression of PTEN lost expression of this gene after dissemination to the brain, but not to other organs. The PTEN level in PTEN-loss brain metastatic tumor cells was restored after leaving the brain microenvironment. This brain microenvironment-dependent, reversible PTEN messenger RNA and protein downregulation was epigenetically regulated by microRNAs from brain astrocytes.

Astrocyte-derived exosomes mediated an intercellular transfer of PTEN-targeting microRNAs to metastatic tumor cells, while astrocyte-specific depletion of PTEN-targeting microRNAs or blockade of astrocyte exosome secretion rescued the PTEN loss and suppressed brain metastasis in vivo. This adaptive PTEN loss in brain metastatic tumor cells led to an increased secretion of the chemokine CCL2, which recruited myeloid cells that reciprocally enhanced the outgrowth of brain metastatic tumor cells via enhanced proliferation and reduced apoptosis.

Contributing author Dr. Siyuan Zhang, professor of cancer research at Notre Dame University, said, "The microenvironment has tremendous impact on how the gene is expressed, what type of gene will be expressed. It is definitely not due to genetic mutation. The point of this paper is we should not overlook the huge influence of the tissue architecture, the tissue environment, the tissue composition. It is a dynamic process."

Related Links:

University of Notre Dame
University of Texas MD Anderson Cancer Center 


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more