LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Custom-Designed SNP Array Facilitates Japanese Genomic Studies

By LabMedica International staff writers
Posted on 16 Sep 2015
Print article
Image: The \"Japonica Array\" contains 659,253 SNPs, including tag SNPs for imputation, SNPs of Y chromosome and mitochondria, and SNPs related to previously reported genome-wide association studies and pharmacogenomics (Photo courtesy of Tohoku Medical Megabank Organization).
Image: The \"Japonica Array\" contains 659,253 SNPs, including tag SNPs for imputation, SNPs of Y chromosome and mitochondria, and SNPs related to previously reported genome-wide association studies and pharmacogenomics (Photo courtesy of Tohoku Medical Megabank Organization).
Japanese genomic researchers have created a single nucleotide polymorphism (SNP) array optimized for studies on the Japanese population.

The so-called "Japonica Array" was designed by investigators at the Tohoku University Tohoku Medical Megabank Organization (Sendai, Japan). As source material, the investigators used the Tohoku Medical Megabank Organization's reference panel (referred to as the 1KJPN panel), which contains more than 20 million SNPs from whole-genome sequence data from 1070 Japanese individuals. The 1KJPN panel contains the largest number of haplotypes of Japanese ancestry to date.

Beginning with the 1KJPN panel, the investigators designed a novel custom-made SNP array, containing 659,253 SNPs, including tag SNPs for imputation, SNPs of Y- chromosome and mitochondria, and SNPs related to previously reported genome-wide association studies and pharmacogenomics.

The Japonica Array was found to provide better imputation performance for Japanese individuals than the existing commercially available SNP arrays. Imputation is an information science technique for estimating the genotype of several millions of unmeasured SNPs with a SNP array by combining it with a reference panel.

The genomic coverage of the Japonica Array was 96.9% for common SNPs; that is, almost all common SNPs were covered by this array. Furthermore, the coverage of low-frequency SNPs reached 67.2%, which was higher than those of other existing arrays.

The investigators confirmed the high quality genotyping performance of the Japonica array using the 288 samples from the 1KJPN reference panel. Results obtained from genotype screening with a high-throughput sequencer yielded an average call rate of 99.7% and an average concordance rate of 99.7%. Thus, the creation of custom-made SNP arrays based on a population-specific reference panel was shown to be a practical way to facilitate further association studies through genome-wide genotype imputations.

The study was published in the June 25, 2015, online edition of the Journal of Human Genetics.

Related Links:

Tohoku University Tohoku Medical Megabank Organization


New
Gold Member
Human Chorionic Gonadotropin Test
hCG Quantitative - R012
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Aspergillus Test
REALQUALITY Aspergillus
New
Mumps Virus Test
ZEUS ELISA Mumps IgG Test System

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The ready-to-use DUB enzyme assay kits accelerate routine DUB activity assays without compromising data quality (Photo courtesy of Adobe Stock)

Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation

Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.