LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Manipulating MicroRNA Levels May Return Cancer Cells to Normalcy

By LabMedica International staff writers
Posted on 07 Sep 2015
Print article
A possible approach for inducing cancer cells to revert to a precancerous state is based on the protein PLEKHA7 (Pleckstrin homology domain-containing family A member 7), which regulates the levels of select microRNAs (miRNAs) to suppress expression of cell transforming factors.

Investigators at the Mayo Clinic (Jacksonville, FL, USA) had been trying to explain why two proteins, E-cadherin and p120 catenin (catenin [cadherin-associated protein], delta 1 or p120) sometimes seemed to suppress cancer formation and at other times seemed to promote it.

Cadherins (named for “calcium-dependent adhesion”) are a class of type-1 transmembrane proteins. They play important roles in cell adhesion, ensuring that cells within tissues are bound together. They are dependent on calcium (Ca2+) ions to function, hence their name. Loss of E-cadherin function or expression has been implicated in cancer progression and metastasis. E-cadherin downregulation decreases the strength of cellular adhesion within a tissue, resulting in an increase in cellular motility. This in turn may allow cancer cells to cross the basement membrane and invade surrounding tissues.

The gene for p120 encodes a member of the Armadillo protein family, which function in adhesion between cells and signal transduction.

The investigators reported in the August 24, 2015, online edition of the journal Nature Cell Biology that PLEKHA7 recruited the so-called "microprocessor complex" (association of DROSHA and DGCR8 proteins) to a growth-inhibiting site (apical zonula adherens) in epithelial cells instead of sites at basolateral areas of cell–cell contact. If the microprocessor complex was recruited to a basolateral area instead of to the apical zonula adherens, miRNA regulation was disrupted, causing tumor growth. Restoring normal miRNA levels in tumor cells reversed that aberrant cell growth.

"We believe that loss of the apical PLEKHA7-microprocessor complex is an early and somewhat universal event in cancer," said senior author Dr. Panos Anastasiadis, chairman of the department of cancer biology at the Mayo Clinic. "In the vast majority of human tumor samples we examined, this apical structure is absent, although E-cadherin and p120 are still present. This produces the equivalent of a speeding car that has a lot of gas (the bad p120) and no brakes (the PLEKHA7-microprocessor complex). By administering the affected miRNAs in cancer cells to restore their normal levels, we should be able to reestablish the brakes and restore normal cell function. Initial experiments in some aggressive types of cancer are indeed very promising."

Related Links:

Mayo Clinic


New
Gold Member
LEISHMANIA Test
LEISHMANIA ELISA
New
Gold Member
Chagas Disease Test
CHAGAS Cassette
New
QC Software Solution
Unity Interlaboratory Program
New
Basophil Activation Test
Flow CAST Kit

Print article

Channels

Molecular Diagnostics

view channel
Image: The DNA sequencing method indentifies the bacterial causes of infections to determine the most effective antibiotics for treatment (Photo courtesy of Shutterstock)

New DNA Test Diagnoses Bacterial Infections Faster and More Accurately

Antimicrobial resistance has emerged as a significant global health threat, causing at least one million deaths annually since 1990. The Global Research on Antimicrobial Resistance (GRAM) Project warns... Read more

Pathology

view channel
Image: The Results Manager System (Photo courtesy of QuidelOrtho)

Informatics Solution Elevates Laboratory Efficiency and Patient Care

QuidelOrtho Corporation (San Diego, CA, USA) has introduced the QuidelOrtho Results Manager System, a cutting-edge informatics solution designed to meet the increasing demands of modern laboratories.... Read more
Sekisui Diagnostics UK Ltd.