We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Suppression of DNA Repair by H. pylori Paves the Way for Development of Gastric Cancer

By LabMedica International staff writers
Posted on 28 Jun 2015
Print article
Image: The stomach bacterium Helicobacter pylori changes the activity of genes in gastric cells (Photo courtesy of Max Planck Institute for Infection Biology).
Image: The stomach bacterium Helicobacter pylori changes the activity of genes in gastric cells (Photo courtesy of Max Planck Institute for Infection Biology).
A team of molecular microbiologists has established what they believe to be the definitive link between Helicobacter pylori infection and the development of gastric cancer.

Infection with the human pathogen H. pylori is a major risk factor for gastric cancer. However, since the bacterium exerts multiple genotoxic effects, investigators at the Max Planck Institute for Infection Biology (Berlin, Germany) chose to examine how DNA damage accumulated in gastric cells following H. pylori infection.

The investigators utilized a new technique for cultivating cultures of normal human stomach tissue. This material replaced the use of cancer cell lines whose mutated genomes obscured early changes induced by H. pylori.

Results published in the June 11, 2015, online edition of the journal Cell Reports revealed that the activity of several sub-telomeric genes responsible for recognizing and repairing damaged DNA was suppressed during the course of the infection. Infection impaired several host cell DNA repair factors, the extent of which depended on a functional H. pylori cag pathogenicity island (cagPAI). This led to accumulation of a unique DNA damage pattern, preferentially in transcribed regions and proximal to telomeres, in both gastric cell lines and primary gastric epithelial cells. The observed pattern correlated with focal amplifications in adenocarcinomas of the stomach and partly overlapped with known cancer genes.

They authors described their interpretation of the impact of H. pylori infection on host cell DNA by saying, "We thus demonstrate an impact of a bacterial infection directed toward specific host genomic regions and describe underlying characteristics that make such regions more likely to acquire heritable changes during infection, which could contribute to cellular transformation."

Related Links:

Max Planck Institute for Infection Biology


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)

Advanced Liquid Biopsy Technology Detects Cancer Earlier Than Conventional Methods

Liquid biopsy technology has yet to fully deliver on its significant potential. Traditional methods have focused on a narrow range of cancer-associated mutations that are often present in such low quantities... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
LGC Clinical Diagnostics