LabMedica

Download Mobile App
Recent News Expo Medica 2025 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Research on Zebrafish Embryos Reveals Origin of the Lymphatic System

By LabMedica International staff writers
Posted on 03 Jun 2015
Image: Zebrafish embryos with fluorescent blood vessels helped solve the mystery regarding the origin of the lymphatic system (Photo courtesy of the Weizmann Institute of Science).
Image: Zebrafish embryos with fluorescent blood vessels helped solve the mystery regarding the origin of the lymphatic system (Photo courtesy of the Weizmann Institute of Science).
A team of developmental biologists working with a zebrafish embryo model system has located the site of origin of the lymphatic system and identified a gene critical to the differentiation of stem cells into mature lymphatic cells.

Investigators at the Weizmann Institute of Science (Rehovot, Israel) exploited the transparent bodies of zebrafish embryos to document development in real time over a period of several days. By reversing the direction of the video images, they were able to determine that the cells giving rise to lymphatic vessels always originated in a niche of angioblasts localized at the same part of the embryo's major vein.

Zooming in to the molecular level, the investigators identified the Wnt5b protein as a novel lymphatic inductive signal in the zebrafish embryos and further showed that it promoted the "angioblast-to-lymphatic" transition in human embryonic stem cells as well. Wnt5b in humans is encoded by the WNT5B (Wingless-type MMTV integration site family, member 5B) gene. The WNT gene family consists of structurally related genes that encode secreted signaling proteins. These proteins have been implicated in oncogenesis and in several developmental processes, including regulation of cell fate and patterning during embryogenesis.

Writing in the May 20, 2015, online edition of the journal Nature, the investigators reported that addition of Wnt5b to cultures of human embryonic stem cells induced those cells to differentiate into lymphatic cells—possibly the first time such cells had been grown in a laboratory.

"We started out by imaging zebrafish, and ended up finding a factor that makes it possible to create lymphatic cells," said senior author Dr. Karina Yaniv, assistant professor of biological regulation at the Weizmann Institute of Science. "That is the beauty of research in developmental biology: The embryo holds the answers, and all we have to do is watch and learn."

Related Links:

Weizmann Institute of Science


Gold Member
Hybrid Pipette
SWITCH
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Silver Member
PCR Plates
Diamond Shell PCR Plates
New
Gold Member
Ketosis and DKA Test
D-3-Hydroxybutyrate (Ranbut) Assay

Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: Development of targeted therapeutics and diagnostics for extrapulmonary tuberculosis at University Hospital Cologne (Photo courtesy of Michael Wodak/Uniklinik Köln)

Blood-Based Molecular Signatures to Enable Rapid EPTB Diagnosis

Extrapulmonary tuberculosis (EPTB) remains difficult to diagnose and treat because it spreads beyond the lungs and lacks easily accessible biomarkers. Despite TB infecting 10 million people yearly, the... Read more
GLOBE SCIENTIFIC, LLC