Portable Device Could Test for Physical Property of Tumor Aggressiveness
|
By LabMedica International staff writers Posted on 24 May 2015 |

Image: A user calibrates a newly developed portable polarimetric fiber stress sensor device while studying tumors by measuring Young’s modulus—an elasticity-related property recently linked to cancerous tumor aggressiveness (Photo courtesy of Kelvin Kuo, University of Southern California).
A new polarimetric fiber stress sensor device has been developed for visco-elastic and biomimetic material analysis, and, as part of the emerging field of physical oncology, is being tested for measuring a tumor’s Young’s modulus—an elasticity-related measure recently linked to cancerous tumor aggressiveness.
Engineers from the Viterbi School of Engineering at the University of Southern California (LA, CA, USA) developed the device and in preliminary testing found that more aggressive tumors are generally stiffer, a complex relationship that requires further study. The device itself is an important step in the challenge of developing non-destructive methods to characterize physical properties of biological materials, and will be suitable for a wide variety of applications. It is an all-fiber-based material analysis device based on optical polarimetry that is different from previous polarimetric systems which rely on free-space components.
"The device leaves the sample completely undamaged, which allows researchers to still perform other tests on it," said Mark Harrison, USC engineering graduate student. Previous detectors required time-consuming alignment and were highly sensitive to environmental vibration. To solve these problems, the new device uses fiber optics, taking a cue from telecommunications. The system adds force onto a sample on top of the optical fiber, changing the polarization of the laser inside in a predictable way that enables calculation of the Young's modulus.
"Instruments able to measure a material's Young's modulus already existed, but they're large and require calibration each time they're moved," said Andrea Armani, USC associate professor of engineering, "Our device could be carried from hospital room to hospital room and doesn't need an engineer to operate it."
Prof. Armani was inspired after a conversation with colleague David Agus, USC professor of medicine and engineering, who told her that Young’s modulus has been linked to tumor aggressiveness but he lacked an easy-to-use device for testing that metric. "This advancement from Prof. Armani is so exciting, as we now have a new dimension of a tumor to measure. We are studying the role of Young's modulus together with Prof. Armani to help personalize and improve a cancer patient's care," said Prof. Agus.
In addition to evaluating the device's role in a clinical setting, there is also increased interest on a more fundamental level: understanding how different types of tumors are related to their mechanical properties. Emphasis has mostly been placed on the chemical makeup of tumors so most current tests to probe the nature of cancerous tumors focus on chemical makeup—an important feature to understand, but only part of whole the picture. "Physical oncology represents a completely fresh approach to tackling the problem of cancer. It has the potential to provide huge insights as scientists throughout the world try to understand, treat, and ultimately prevent cancer in humans," said Peter Kuhn, USC professor who helped launch a new peer-reviewed journal on physical oncology.
"Given how safe, stable, and accurate this instrument is, it could play a pivotal role in both diagnostic and research efforts," said Prof. Armani. The team next will work with Prof. Agus to test it in a clinical setting. They also hope to create a more sensitive version of the device that can map Young’s modulus across tumors.
The study, by Harrison MC and Armani AM, was published online May 14, 2015, in the journal Applied Physics Letters.
Related Links:
University of Southern California
Engineers from the Viterbi School of Engineering at the University of Southern California (LA, CA, USA) developed the device and in preliminary testing found that more aggressive tumors are generally stiffer, a complex relationship that requires further study. The device itself is an important step in the challenge of developing non-destructive methods to characterize physical properties of biological materials, and will be suitable for a wide variety of applications. It is an all-fiber-based material analysis device based on optical polarimetry that is different from previous polarimetric systems which rely on free-space components.
"The device leaves the sample completely undamaged, which allows researchers to still perform other tests on it," said Mark Harrison, USC engineering graduate student. Previous detectors required time-consuming alignment and were highly sensitive to environmental vibration. To solve these problems, the new device uses fiber optics, taking a cue from telecommunications. The system adds force onto a sample on top of the optical fiber, changing the polarization of the laser inside in a predictable way that enables calculation of the Young's modulus.
"Instruments able to measure a material's Young's modulus already existed, but they're large and require calibration each time they're moved," said Andrea Armani, USC associate professor of engineering, "Our device could be carried from hospital room to hospital room and doesn't need an engineer to operate it."
Prof. Armani was inspired after a conversation with colleague David Agus, USC professor of medicine and engineering, who told her that Young’s modulus has been linked to tumor aggressiveness but he lacked an easy-to-use device for testing that metric. "This advancement from Prof. Armani is so exciting, as we now have a new dimension of a tumor to measure. We are studying the role of Young's modulus together with Prof. Armani to help personalize and improve a cancer patient's care," said Prof. Agus.
In addition to evaluating the device's role in a clinical setting, there is also increased interest on a more fundamental level: understanding how different types of tumors are related to their mechanical properties. Emphasis has mostly been placed on the chemical makeup of tumors so most current tests to probe the nature of cancerous tumors focus on chemical makeup—an important feature to understand, but only part of whole the picture. "Physical oncology represents a completely fresh approach to tackling the problem of cancer. It has the potential to provide huge insights as scientists throughout the world try to understand, treat, and ultimately prevent cancer in humans," said Peter Kuhn, USC professor who helped launch a new peer-reviewed journal on physical oncology.
"Given how safe, stable, and accurate this instrument is, it could play a pivotal role in both diagnostic and research efforts," said Prof. Armani. The team next will work with Prof. Agus to test it in a clinical setting. They also hope to create a more sensitive version of the device that can map Young’s modulus across tumors.
The study, by Harrison MC and Armani AM, was published online May 14, 2015, in the journal Applied Physics Letters.
Related Links:
University of Southern California
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







