Presenilin Gene Mutation Linked to Familial form of Alzheimer's Disease
|
By LabMedica International staff writers Posted on 24 Mar 2015 |

Image: Comparing sections of cortex from a control mouse (left) to a mouse with a presenilin-1 mutation (right). The dashed line indicates the surface of the brain. Presenilin-1 mutations decrease gamma-secretase activity and cause features of neurodegeneration, including shrinkage of the cortex, as shown above (Photo courtesy of Dr. Raymond Kelleher and Dr. Jie Shen, Harvard Medical School).
Results obtained in studies using a genetically engineered mouse model of hereditary Alzheimer's disease pointed to the importance of reduced gamma-secretase activity caused by a mutation in the presenilin (PSEN1) gene.
Most cases of Alzheimer's disease are not hereditary. However, there is a small subset of cases that have an earlier age of onset and have a strong genetic element. In patients suffering from this form of Alzheimer's disease (autosomal dominant hereditary), mutations in the presenilin proteins (PSEN1 and PSEN2) or the amyloid precursor protein (APP) can be found. The majority of these cases carry mutant presenilin genes. An important factor in the disease process in AD is the accumulation of amyloid beta (Abeta) protein. To form Abeta, APP must be cut by two enzymes, beta-secretase and gamma-secretase. Presenilin is the sub-component of gamma-secretase that is responsible for the cutting of APP. Individuals with a hereditary form of AD over produce type 42 amyloid beta protein (Abeta42), which readily accumulates in the amyloid plaques that characterize the disease.
Investigators at Harvard Medical School (Boston, MA, USA) generated PSEN1 knockin (KI) mice carrying the familial Alzheimer’s disease (FAD) mutation L435F or C410Y.
They reported in the March 4, 2015, online edition of the journal Neuron that KI mice homozygous for either mutation recapitulated the phenotypes of mice that had been genetically engineered to completely lack PSEN1. Neither mutation altered PSEN1 mRNA expression, but both abolished gamma-secretase activity. Heterozygosity for the KI mutation decreased production of Abeta40 and Abeta42, increased the Abeta42/Abeta40 ratio, and increased Abeta deposition. In addition, the L435F mutation impaired hippocampal synaptic plasticity and memory and caused age-dependent neurodegeneration in the aging cerebral cortex. Collectively, the findings revealed that FAD mutations could cause complete loss of presenilin-1 function in vivo, suggesting that clinical PSEN mutations produce FAD through a loss-of-function mechanism.
"This is a very striking example where we have mutations that inactivate gamma-secretase function and yet they trigger an array of features that resemble Alzheimer's disease, notably synaptic and cognitive deficits as well as neurodegeneration," said senior author Dr. Raymond Kelleher, professor of neurology at Harvard Medical School. "This study is the first example of a mouse model in which a familial Alzheimer's mutation is sufficient to cause neurodegeneration. The new model provides an opportunity that we hope will help with the development of therapies focusing on the devastating neurodegenerative changes that occur in the disease."
Related Links:
Harvard Medical School
Most cases of Alzheimer's disease are not hereditary. However, there is a small subset of cases that have an earlier age of onset and have a strong genetic element. In patients suffering from this form of Alzheimer's disease (autosomal dominant hereditary), mutations in the presenilin proteins (PSEN1 and PSEN2) or the amyloid precursor protein (APP) can be found. The majority of these cases carry mutant presenilin genes. An important factor in the disease process in AD is the accumulation of amyloid beta (Abeta) protein. To form Abeta, APP must be cut by two enzymes, beta-secretase and gamma-secretase. Presenilin is the sub-component of gamma-secretase that is responsible for the cutting of APP. Individuals with a hereditary form of AD over produce type 42 amyloid beta protein (Abeta42), which readily accumulates in the amyloid plaques that characterize the disease.
Investigators at Harvard Medical School (Boston, MA, USA) generated PSEN1 knockin (KI) mice carrying the familial Alzheimer’s disease (FAD) mutation L435F or C410Y.
They reported in the March 4, 2015, online edition of the journal Neuron that KI mice homozygous for either mutation recapitulated the phenotypes of mice that had been genetically engineered to completely lack PSEN1. Neither mutation altered PSEN1 mRNA expression, but both abolished gamma-secretase activity. Heterozygosity for the KI mutation decreased production of Abeta40 and Abeta42, increased the Abeta42/Abeta40 ratio, and increased Abeta deposition. In addition, the L435F mutation impaired hippocampal synaptic plasticity and memory and caused age-dependent neurodegeneration in the aging cerebral cortex. Collectively, the findings revealed that FAD mutations could cause complete loss of presenilin-1 function in vivo, suggesting that clinical PSEN mutations produce FAD through a loss-of-function mechanism.
"This is a very striking example where we have mutations that inactivate gamma-secretase function and yet they trigger an array of features that resemble Alzheimer's disease, notably synaptic and cognitive deficits as well as neurodegeneration," said senior author Dr. Raymond Kelleher, professor of neurology at Harvard Medical School. "This study is the first example of a mouse model in which a familial Alzheimer's mutation is sufficient to cause neurodegeneration. The new model provides an opportunity that we hope will help with the development of therapies focusing on the devastating neurodegenerative changes that occur in the disease."
Related Links:
Harvard Medical School
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Urine Test Detects Early Stage Pancreatic Cancer
Pancreatic cancer remains among the hardest cancers to detect early. In the UK, around 10,000 people are diagnosed each year, but only 5% survive beyond five years. Late diagnosis is a major factor—more... Read more
Genomic Test Could Reduce Lymph Node Biopsy Surgery in Melanoma Patients
Accurately determining whether melanoma has spread to the lymph nodes is crucial for guiding treatment decisions, yet the standard procedure—sentinel lymph node biopsy—remains invasive, costly, and unnecessary... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more







 assay.jpg)
