Presenilin Gene Mutation Linked to Familial form of Alzheimer's Disease
By LabMedica International staff writers Posted on 24 Mar 2015 |

Image: Comparing sections of cortex from a control mouse (left) to a mouse with a presenilin-1 mutation (right). The dashed line indicates the surface of the brain. Presenilin-1 mutations decrease gamma-secretase activity and cause features of neurodegeneration, including shrinkage of the cortex, as shown above (Photo courtesy of Dr. Raymond Kelleher and Dr. Jie Shen, Harvard Medical School).
Results obtained in studies using a genetically engineered mouse model of hereditary Alzheimer's disease pointed to the importance of reduced gamma-secretase activity caused by a mutation in the presenilin (PSEN1) gene.
Most cases of Alzheimer's disease are not hereditary. However, there is a small subset of cases that have an earlier age of onset and have a strong genetic element. In patients suffering from this form of Alzheimer's disease (autosomal dominant hereditary), mutations in the presenilin proteins (PSEN1 and PSEN2) or the amyloid precursor protein (APP) can be found. The majority of these cases carry mutant presenilin genes. An important factor in the disease process in AD is the accumulation of amyloid beta (Abeta) protein. To form Abeta, APP must be cut by two enzymes, beta-secretase and gamma-secretase. Presenilin is the sub-component of gamma-secretase that is responsible for the cutting of APP. Individuals with a hereditary form of AD over produce type 42 amyloid beta protein (Abeta42), which readily accumulates in the amyloid plaques that characterize the disease.
Investigators at Harvard Medical School (Boston, MA, USA) generated PSEN1 knockin (KI) mice carrying the familial Alzheimer’s disease (FAD) mutation L435F or C410Y.
They reported in the March 4, 2015, online edition of the journal Neuron that KI mice homozygous for either mutation recapitulated the phenotypes of mice that had been genetically engineered to completely lack PSEN1. Neither mutation altered PSEN1 mRNA expression, but both abolished gamma-secretase activity. Heterozygosity for the KI mutation decreased production of Abeta40 and Abeta42, increased the Abeta42/Abeta40 ratio, and increased Abeta deposition. In addition, the L435F mutation impaired hippocampal synaptic plasticity and memory and caused age-dependent neurodegeneration in the aging cerebral cortex. Collectively, the findings revealed that FAD mutations could cause complete loss of presenilin-1 function in vivo, suggesting that clinical PSEN mutations produce FAD through a loss-of-function mechanism.
"This is a very striking example where we have mutations that inactivate gamma-secretase function and yet they trigger an array of features that resemble Alzheimer's disease, notably synaptic and cognitive deficits as well as neurodegeneration," said senior author Dr. Raymond Kelleher, professor of neurology at Harvard Medical School. "This study is the first example of a mouse model in which a familial Alzheimer's mutation is sufficient to cause neurodegeneration. The new model provides an opportunity that we hope will help with the development of therapies focusing on the devastating neurodegenerative changes that occur in the disease."
Related Links:
Harvard Medical School
Most cases of Alzheimer's disease are not hereditary. However, there is a small subset of cases that have an earlier age of onset and have a strong genetic element. In patients suffering from this form of Alzheimer's disease (autosomal dominant hereditary), mutations in the presenilin proteins (PSEN1 and PSEN2) or the amyloid precursor protein (APP) can be found. The majority of these cases carry mutant presenilin genes. An important factor in the disease process in AD is the accumulation of amyloid beta (Abeta) protein. To form Abeta, APP must be cut by two enzymes, beta-secretase and gamma-secretase. Presenilin is the sub-component of gamma-secretase that is responsible for the cutting of APP. Individuals with a hereditary form of AD over produce type 42 amyloid beta protein (Abeta42), which readily accumulates in the amyloid plaques that characterize the disease.
Investigators at Harvard Medical School (Boston, MA, USA) generated PSEN1 knockin (KI) mice carrying the familial Alzheimer’s disease (FAD) mutation L435F or C410Y.
They reported in the March 4, 2015, online edition of the journal Neuron that KI mice homozygous for either mutation recapitulated the phenotypes of mice that had been genetically engineered to completely lack PSEN1. Neither mutation altered PSEN1 mRNA expression, but both abolished gamma-secretase activity. Heterozygosity for the KI mutation decreased production of Abeta40 and Abeta42, increased the Abeta42/Abeta40 ratio, and increased Abeta deposition. In addition, the L435F mutation impaired hippocampal synaptic plasticity and memory and caused age-dependent neurodegeneration in the aging cerebral cortex. Collectively, the findings revealed that FAD mutations could cause complete loss of presenilin-1 function in vivo, suggesting that clinical PSEN mutations produce FAD through a loss-of-function mechanism.
"This is a very striking example where we have mutations that inactivate gamma-secretase function and yet they trigger an array of features that resemble Alzheimer's disease, notably synaptic and cognitive deficits as well as neurodegeneration," said senior author Dr. Raymond Kelleher, professor of neurology at Harvard Medical School. "This study is the first example of a mouse model in which a familial Alzheimer's mutation is sufficient to cause neurodegeneration. The new model provides an opportunity that we hope will help with the development of therapies focusing on the devastating neurodegenerative changes that occur in the disease."
Related Links:
Harvard Medical School
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Interstitial Lung Disease Test Could Identify Patients Before Symptoms Appear
Interstitial lung disease (ILD) is a group of chronic respiratory disorders that cause inflammation and scarring of lung tissue, often leading to irreversible damage and the need for lung transplants.... Read more
Genomic-First Approach Identifies Rare Genetic Disorders Earlier
Rare genetic disorders (RGDs) affect more than 24 million people in the US, yet many cases remain undiagnosed due to the limitations of traditional testing methods. Current diagnosis typically follows... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
Skin cancer is the most common malignancy worldwide, and accurately assessing tumor invasion or treatment response remains a major clinical challenge. Current imaging methods, such as confocal microscopy... Read more
Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
Glioblastoma (GBM) is the most aggressive form of brain cancer, known for rapid growth, recurrence, and resistance to treatment. Understanding how tumors respond to therapy remains challenging since imaging... Read more
High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
Pancreatic neuroendocrine neoplasms (PNENs) are rare cancers that affect hormone-producing cells in the pancreas. Although uncommon, their incidence has been increasing, and surgery remains the only curative option.... Read moreTechnology
view channel
AI Algorithm Assesses Progressive Decline in Kidney Function
Chronic kidney disease (CKD) affects more than 700 million people worldwide and remains a major global health challenge. The condition often progresses silently, and many patients remain undiagnosed until... Read more
Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
Influenza is one of the most dangerous infectious diseases worldwide, claiming around half a million lives each year. What makes it particularly insidious is that flu viruses are contagious even before... Read more
3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
Early-stage disease diagnosis depends on the ability to detect biomarkers with exceptional sensitivity and precision. However, traditional biosensing technologies struggle with achieving this at the micro-scale,... Read moreIndustry
view channel
Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders
Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes
Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
GSI Group Acquires Blood Processing Equipment Manufacturer GenesisBPS
Blood processing and storage are vital to healthcare and clinical practice, ensuring safe transfusions and cellular therapies. However, hospitals and laboratories worldwide face challenges in maintaining... Read more