Presenilin Gene Mutation Linked to Familial form of Alzheimer's Disease
By LabMedica International staff writers Posted on 24 Mar 2015 |

Image: Comparing sections of cortex from a control mouse (left) to a mouse with a presenilin-1 mutation (right). The dashed line indicates the surface of the brain. Presenilin-1 mutations decrease gamma-secretase activity and cause features of neurodegeneration, including shrinkage of the cortex, as shown above (Photo courtesy of Dr. Raymond Kelleher and Dr. Jie Shen, Harvard Medical School).
Results obtained in studies using a genetically engineered mouse model of hereditary Alzheimer's disease pointed to the importance of reduced gamma-secretase activity caused by a mutation in the presenilin (PSEN1) gene.
Most cases of Alzheimer's disease are not hereditary. However, there is a small subset of cases that have an earlier age of onset and have a strong genetic element. In patients suffering from this form of Alzheimer's disease (autosomal dominant hereditary), mutations in the presenilin proteins (PSEN1 and PSEN2) or the amyloid precursor protein (APP) can be found. The majority of these cases carry mutant presenilin genes. An important factor in the disease process in AD is the accumulation of amyloid beta (Abeta) protein. To form Abeta, APP must be cut by two enzymes, beta-secretase and gamma-secretase. Presenilin is the sub-component of gamma-secretase that is responsible for the cutting of APP. Individuals with a hereditary form of AD over produce type 42 amyloid beta protein (Abeta42), which readily accumulates in the amyloid plaques that characterize the disease.
Investigators at Harvard Medical School (Boston, MA, USA) generated PSEN1 knockin (KI) mice carrying the familial Alzheimer’s disease (FAD) mutation L435F or C410Y.
They reported in the March 4, 2015, online edition of the journal Neuron that KI mice homozygous for either mutation recapitulated the phenotypes of mice that had been genetically engineered to completely lack PSEN1. Neither mutation altered PSEN1 mRNA expression, but both abolished gamma-secretase activity. Heterozygosity for the KI mutation decreased production of Abeta40 and Abeta42, increased the Abeta42/Abeta40 ratio, and increased Abeta deposition. In addition, the L435F mutation impaired hippocampal synaptic plasticity and memory and caused age-dependent neurodegeneration in the aging cerebral cortex. Collectively, the findings revealed that FAD mutations could cause complete loss of presenilin-1 function in vivo, suggesting that clinical PSEN mutations produce FAD through a loss-of-function mechanism.
"This is a very striking example where we have mutations that inactivate gamma-secretase function and yet they trigger an array of features that resemble Alzheimer's disease, notably synaptic and cognitive deficits as well as neurodegeneration," said senior author Dr. Raymond Kelleher, professor of neurology at Harvard Medical School. "This study is the first example of a mouse model in which a familial Alzheimer's mutation is sufficient to cause neurodegeneration. The new model provides an opportunity that we hope will help with the development of therapies focusing on the devastating neurodegenerative changes that occur in the disease."
Related Links:
Harvard Medical School
Most cases of Alzheimer's disease are not hereditary. However, there is a small subset of cases that have an earlier age of onset and have a strong genetic element. In patients suffering from this form of Alzheimer's disease (autosomal dominant hereditary), mutations in the presenilin proteins (PSEN1 and PSEN2) or the amyloid precursor protein (APP) can be found. The majority of these cases carry mutant presenilin genes. An important factor in the disease process in AD is the accumulation of amyloid beta (Abeta) protein. To form Abeta, APP must be cut by two enzymes, beta-secretase and gamma-secretase. Presenilin is the sub-component of gamma-secretase that is responsible for the cutting of APP. Individuals with a hereditary form of AD over produce type 42 amyloid beta protein (Abeta42), which readily accumulates in the amyloid plaques that characterize the disease.
Investigators at Harvard Medical School (Boston, MA, USA) generated PSEN1 knockin (KI) mice carrying the familial Alzheimer’s disease (FAD) mutation L435F or C410Y.
They reported in the March 4, 2015, online edition of the journal Neuron that KI mice homozygous for either mutation recapitulated the phenotypes of mice that had been genetically engineered to completely lack PSEN1. Neither mutation altered PSEN1 mRNA expression, but both abolished gamma-secretase activity. Heterozygosity for the KI mutation decreased production of Abeta40 and Abeta42, increased the Abeta42/Abeta40 ratio, and increased Abeta deposition. In addition, the L435F mutation impaired hippocampal synaptic plasticity and memory and caused age-dependent neurodegeneration in the aging cerebral cortex. Collectively, the findings revealed that FAD mutations could cause complete loss of presenilin-1 function in vivo, suggesting that clinical PSEN mutations produce FAD through a loss-of-function mechanism.
"This is a very striking example where we have mutations that inactivate gamma-secretase function and yet they trigger an array of features that resemble Alzheimer's disease, notably synaptic and cognitive deficits as well as neurodegeneration," said senior author Dr. Raymond Kelleher, professor of neurology at Harvard Medical School. "This study is the first example of a mouse model in which a familial Alzheimer's mutation is sufficient to cause neurodegeneration. The new model provides an opportunity that we hope will help with the development of therapies focusing on the devastating neurodegenerative changes that occur in the disease."
Related Links:
Harvard Medical School
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
New Clinical Chemistry Analyzer Designed to Meet Growing Demands of Modern Labs
A new clinical chemistry analyzer is designed to provide outstanding performance and maximum efficiency, without compromising affordability, to meet the growing demands of modern laboratories.... Read more
New Reference Measurement Procedure Standardizes Nucleic Acid Amplification Test Results
Nucleic acid amplification tests (NAATs) play a key role in diagnosing a wide range of infectious diseases. These tests are generally known for their high sensitivity and specificity, and they can be developed... Read moreMolecular Diagnostics
view channel
New Biomarker Panel to Enable Early Detection of Pancreatic Cancer
Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more
Ultrarapid Whole Genome Sequencing for Neonatal and Pediatric Patients Delivers Results In 48 Hours
Genetic diseases are the leading identifiable cause of infant mortality, and early diagnosis is crucial to improve patient outcomes. In the neonatal and pediatric intensive care units (NICU and PICU),... Read more
AI-Enabled Blood Test Demonstrates Diagnostic, Prognostic and Predictive Utility Across Cancer Continuum
Cancer remains a major challenge in healthcare due to difficulties in early detection and accurate diagnosis. Many cancers are diagnosed at advanced stages, limiting treatment options and impacting survival rates.... Read moreHematology
view channel
Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results
Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more
First Point-of-Care Heparin Monitoring Test Provides Results in Under 15 Minutes
Heparin dosing requires careful management to avoid both bleeding and clotting complications. In high-risk situations like extracorporeal membrane oxygenation (ECMO), mortality rates can reach about 50%,... Read moreImmunology
view channel
Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer
Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more
Groundbreaking Lateral Flow Test Quantifies Nucleosomes in Whole Venous Blood in Minutes
Diagnosing immune disruptions quickly and accurately is crucial in conditions such as sepsis, where timely intervention is critical for patient survival. Traditional testing methods can be slow, expensive,... Read moreMicrobiology
view channel
Viral Load Tests Can Help Predict Mpox Severity
Mpox is a viral infection that causes flu-like symptoms and a characteristic rash, which evolves significantly over time and varies between patients. The disease spreads mainly through direct contact with... Read more
Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
Gestational diabetes mellitus is a common metabolic disorder marked by abnormal glucose metabolism during pregnancy, typically emerging in the mid to late stages. It significantly heightens the risk of... Read morePathology
view channel
AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care
Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more
AI Tool Enhances Interpretation of Tissue Samples by Pathologists
Malignant melanoma, a form of skin cancer, is diagnosed by pathologists based on tissue samples. A crucial aspect of this process is estimating the presence of tumor-infiltrating lymphocytes (TILs), immune... Read more
AI-Assisted Technique Tracks Cells Damaged from Injury, Aging and Disease
Senescent cells, which stop growing and reproducing due to injury, aging, or disease, play a critical role in wound repair and aging-related diseases like cancer and heart disease. These cells, however,... Read more
Novel Fluorescent Probe Shows Potential in Precision Cancer Diagnostics and Fluorescence-Guided Surgery
Hepatocellular carcinoma (HCC), a common type of liver cancer, is difficult to diagnose early and accurately due to the limitations of current diagnostic methods. Glycans, carbohydrate structures present... Read moreTechnology
view channel
Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation
Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
Ultra-Sensitive Biosensor Based on Light and AI Enables Early Cancer Diagnosis
Cancer diagnosis is often delayed due to the difficulty in detecting early-stage cancer markers. In particular, the concentration of methylated DNA in the bloodstream during the early stages of cancer... Read moreIndustry
view channel
2025 COMPAMED Innovation Forum Highlights Pioneering Work in Cancer Diagnostics
Cancer cases are among the biggest challenges faced by global healthcare systems. The incidence has risen in recent decades, not least on account of demographic change and escalating risk factors.... Read more
Quanterix Completes Acquisition of Akoya Biosciences
Quanterix Corporation (Billerica, MA, USA) has completed its previously announced acquisition of Akoya Biosciences (Marlborough, MA, USA), paving the way for the creation of the first integrated solution... Read more
Lunit and Microsoft Collaborate to Advance AI-Driven Cancer Diagnosis
Lunit (Seoul, South Korea) and Microsoft (Redmond, WA, USA) have entered into a collaboration to accelerate the delivery of artificial intelligence (AI)-powered healthcare solutions. In conjunction with... Read more