Cholesterol Levels in Later Life Depend in Part on Apolipoprotein E Allele Status
By LabMedica International staff writers Posted on 01 Dec 2014 |

Image: Molecular structure of apoE2. The amino acid argenine at site158 has been replaced by cysteine (Photo courtesy of Wikimedia Commons).
Variations in the APOE gene modify the rise and fall of serum cholesterol levels from midlife to late life, and in order to efficiently modify cholesterol through the life span, it is important that the physician takes into account the patient's APOE allele status.
Apolipoprotein E (apoE), which is 299 amino acids long, comprises a class of apolipoprotein found in the chylomicron and intermediate-density lipoprotein (IDL) fraction that is essential for the normal catabolism of triglyceride-rich lipoprotein constituents. In peripheral tissues, apoE is primarily produced by the liver and macrophages and mediates cholesterol metabolism in an isoform-dependent manner.
The APOE gene is polymorphic, with three major alleles: APOE2, APOE3, and APOE4. Although these allelic forms differ from each other by only one or two amino acids at positions 112 and 158, these differences alter apoE structure and function. These have physiological consequences: apoE2, which has an allele frequency of approximately 7%, percent binds poorly to cell surface receptors while apoE3 and apoE4 bind well. ApoE2 is associated with both increased and decreased risk for atherosclerosis. ApoE3 has an allele frequency of approximately 79% and is considered the "neutral" apo E genotype. ApoE4 has an allele frequency of approximately 14% and has been implicated in atherosclerosis, Alzheimer's disease, and several other pathogenic states.
Investigators at the University of Texas Medical Branch (Galveston, USA) and colleagues at the University of Kentucky (Lexington, USA) analyzed data from blood samples of nearly 600 participants in the Framingham Heart Study Original Cohort to determine if variations in apoE influenced trajectories of total cholesterol, HDL cholesterol, and total: HDL cholesterol ratio from midlife through late life.
Results revealed that subjects with apoE2 had lower total cholesterol levels, higher HDL cholesterol levels, and lower total:HDL cholesterol ratios from midlife to late life compared to apoE3 and apoE4 subjects. Statistically significant differences in life span cholesterol trajectories according to gender and use of cholesterol-lowering medications were also detected. Individuals who lived past 90 years of age had higher total cholesterol during late life compared to adults who did not reach this age. This finding may have important implications for continuing the practice of prescribing cholesterol-lowering medications to the elderly.
“The increased risk for cognitive and cardiovascular diseases among older adults who carry an APOE4 allele may be due, in part, to the fact that these individuals are predisposed to having higher total cholesterol and lower HDL cholesterol from midlife through late life, compared to people with the APOE 3 variant,” said first author Dr. Brian Downer, postdoctoral research fellow at the University of Texas Medical Branch. “The decreased risk for these diseases associated with the APOE2 allele may be due to the lower total cholesterol and higher HDL cholesterol across the life span. Further research is needed to determine if reducing total cholesterol and increasing HDL cholesterol decreases the risk for cognitive and vascular diseases among adults who carry APOE4 alleles.”
“The findings from this study have important implications to public health,” said Dr. Downer. “To efficiently modify cholesterol, and as a result, disease risk, it is important to consider how APOE allele status influences cholesterol levels from midlife through late life. The relationship between APOE, cholesterol and longevity is complex and it is important to continue conducting research in this area so that older adults know how to appropriately manage cholesterol levels during old age.”
The study was published in the October 16, 2014, online edition of the International Journal of Environmental Research and Public Health.
Related Links:
University of Texas Medical Branch
University of Kentucky
Apolipoprotein E (apoE), which is 299 amino acids long, comprises a class of apolipoprotein found in the chylomicron and intermediate-density lipoprotein (IDL) fraction that is essential for the normal catabolism of triglyceride-rich lipoprotein constituents. In peripheral tissues, apoE is primarily produced by the liver and macrophages and mediates cholesterol metabolism in an isoform-dependent manner.
The APOE gene is polymorphic, with three major alleles: APOE2, APOE3, and APOE4. Although these allelic forms differ from each other by only one or two amino acids at positions 112 and 158, these differences alter apoE structure and function. These have physiological consequences: apoE2, which has an allele frequency of approximately 7%, percent binds poorly to cell surface receptors while apoE3 and apoE4 bind well. ApoE2 is associated with both increased and decreased risk for atherosclerosis. ApoE3 has an allele frequency of approximately 79% and is considered the "neutral" apo E genotype. ApoE4 has an allele frequency of approximately 14% and has been implicated in atherosclerosis, Alzheimer's disease, and several other pathogenic states.
Investigators at the University of Texas Medical Branch (Galveston, USA) and colleagues at the University of Kentucky (Lexington, USA) analyzed data from blood samples of nearly 600 participants in the Framingham Heart Study Original Cohort to determine if variations in apoE influenced trajectories of total cholesterol, HDL cholesterol, and total: HDL cholesterol ratio from midlife through late life.
Results revealed that subjects with apoE2 had lower total cholesterol levels, higher HDL cholesterol levels, and lower total:HDL cholesterol ratios from midlife to late life compared to apoE3 and apoE4 subjects. Statistically significant differences in life span cholesterol trajectories according to gender and use of cholesterol-lowering medications were also detected. Individuals who lived past 90 years of age had higher total cholesterol during late life compared to adults who did not reach this age. This finding may have important implications for continuing the practice of prescribing cholesterol-lowering medications to the elderly.
“The increased risk for cognitive and cardiovascular diseases among older adults who carry an APOE4 allele may be due, in part, to the fact that these individuals are predisposed to having higher total cholesterol and lower HDL cholesterol from midlife through late life, compared to people with the APOE 3 variant,” said first author Dr. Brian Downer, postdoctoral research fellow at the University of Texas Medical Branch. “The decreased risk for these diseases associated with the APOE2 allele may be due to the lower total cholesterol and higher HDL cholesterol across the life span. Further research is needed to determine if reducing total cholesterol and increasing HDL cholesterol decreases the risk for cognitive and vascular diseases among adults who carry APOE4 alleles.”
“The findings from this study have important implications to public health,” said Dr. Downer. “To efficiently modify cholesterol, and as a result, disease risk, it is important to consider how APOE allele status influences cholesterol levels from midlife through late life. The relationship between APOE, cholesterol and longevity is complex and it is important to continue conducting research in this area so that older adults know how to appropriately manage cholesterol levels during old age.”
The study was published in the October 16, 2014, online edition of the International Journal of Environmental Research and Public Health.
Related Links:
University of Texas Medical Branch
University of Kentucky
Latest Clinical Chem. News
- ‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
- Low-Cost Portable Screening Test to Transform Kidney Disease Detection
- New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
- Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability
- Rapid Drug Test to Improve Treatment for Patients Presenting to Hospital
- AI Model Detects Cancer at Lightning Speed through Sugar Analyses
- First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring
- New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections
Channels
Molecular Diagnostics
view channel
Blood Test Could Predict Relapse of Autoimmune Blood Vessel Disease
Neutrophils, once believed to be uniform in nature, have been discovered to exhibit significant diversity. These immune cells, which play a crucial role in fighting infections, are also implicated in autoimmune... Read more
First-of-its-Kind Blood Test Detects Trauma-Related Diseases
In today’s fast-paced world, stress and trauma have unfortunately become common experiences for many individuals. Continuous exposure to stress hormones can confuse the immune system, causing it to misinterpret... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read more
World’s First AI Model for Thyroid Cancer Diagnosis Achieves Over 90% Accuracy
Thyroid cancer is one of the most common cancers worldwide, and its precise management typically relies on two primary systems: (1) the 8th edition of the American Joint Committee on Cancer (AJCC) or ... Read more
Breakthrough Diagnostic Approach to Significantly Improve TB Detection
Tuberculosis (TB) remains the deadliest infectious disease globally, with 10.8 million new cases and 1.25 million deaths reported in 2023. Early detection through effective screening is crucial in identifying... Read more
Rapid, Ultra-Sensitive, PCR-Free Detection Method Makes Genetic Analysis More Accessible
Genetic testing has been an important method for detecting infectious diseases, diagnosing early-stage cancer, ensuring food safety, and analyzing environmental DNA. For a long time, polymerase chain reaction... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more