Device Developed for Rapid On-Site Pathogen Diagnostics
|
By Doris Mendieta, Contributing News Editor Posted on 26 Oct 2014 |

Image: Prototype of the SP-IRIS (single particle - interferometric reflectance imaging sensor), which detects pathogens by shining light from multicolor LED sources on viral nanoparticles trapped onto the sensor surface by a coating of virus-specific antibodies (Photo courtesy of NexGen Arrays).
A novel nanotechnology-based prototype device can detect pathogens such as Ebola and other hemorrhagic fever viruses – quickly and on-site.
The novel device is being developed by a research team led by Boston University's (Boston, MA, USA) Selim Ünlü, professor of biomedical engineering, and John Connor, professor of medical microbiology. Conventional fluorescent label-based virus detection methods require expensive lab equipment, significant sample preparation, transport and processing times, and extensive user training. A solution in pathogen diagnostics, and thereby also treatment and containment, may come from this device—a rapid, label-free, chip-scale photonic system that can provide affordable, simple, accurate on-site detection, also in resource-limited countries. A potentially game-changing technology, the device identifies individual viruses based on size variations resulting from distinct genome lengths and other factors.
The first demonstration of the concept, reported in 2010 and developed by a group led by Prof. Ünlü in collaboration with Bennett Goldberg, professor of physics at BU, showed the ability to pinpoint and size single H1N1 virus particles. Now, after 4 years of refining the instrumentation with the collaboration of Prof. Connor's group and researchers at the University of Texas Medical Branch, the team has demonstrated simultaneous detection of multiple viruses in blood serum samples—including viruses genetically modified to mimic the behavior of Ebolavirus and the Marburgvirus.
“Others have developed different label-free systems, but none have been nearly as successful in detecting nanoscale viral particles in complex media,” says Prof. Ünlü, referring to typical (e.g., unprocessed blood) samples that may have a mix of viruses, bacteria, and proteins. He added, “Leveraging expertise in optical biosensors and hemorrhagic fever diseases, our collaborative research effort has produced a highly sensitive device.” Also, the system requires little to no sample preparation time and delivers answers in about 1 hour. “By minimizing sample preparation and handling, our system can reduce potential exposure to health care workers,” said Prof. Connor, “And by looking for multiple viruses at the same time, patients can be diagnosed much more effectively.”
The shoebox-sized, battery-operated prototype – the single particle - interferometric reflectance imaging sensor (SP-IRIS) – detects by shining light from multicolor LED sources on viral nanoparticles trapped onto the sensor surface by a coating of virus-specific antibodies. Interference of light reflected from the surface is modified by the presence of the particles, producing a distinct signal that reveals the size and shape of each particle. The system is capable of high-throughput as the sensor surface is very large and can capture the telltale responses of up to a million nanoparticles.
In collaboration with BD Technologies (Research Triangle Park, NC, USA) and the start-up NexGen Arrays (Boston, MA, USA), the team is now working on making SP-IRIS more robust, field-ready, and fast — ideally delivering answers within 30 minutes—through further technology development and preclinical trials. SP-IRIS devices are now being tested in several labs, including a Biosafety Level-4 (BSL-4) lab at the University of Texas Medical Branch equipped to work with hemorrhagic viruses. Other tests will be conducted at BU’s NEIDL once the facility is BSL-4 approved. Based on the current rate of progress, the instrument could be ready to enter the field in 5 years.
The research, by Daaboul GG et al., appeared in the journal ACS Nano, May, 2014.
Related Links:
Boston University
BU National Emerging Infectious Diseases Laboratories (NEIDL)
NexGen Arrays
The novel device is being developed by a research team led by Boston University's (Boston, MA, USA) Selim Ünlü, professor of biomedical engineering, and John Connor, professor of medical microbiology. Conventional fluorescent label-based virus detection methods require expensive lab equipment, significant sample preparation, transport and processing times, and extensive user training. A solution in pathogen diagnostics, and thereby also treatment and containment, may come from this device—a rapid, label-free, chip-scale photonic system that can provide affordable, simple, accurate on-site detection, also in resource-limited countries. A potentially game-changing technology, the device identifies individual viruses based on size variations resulting from distinct genome lengths and other factors.
The first demonstration of the concept, reported in 2010 and developed by a group led by Prof. Ünlü in collaboration with Bennett Goldberg, professor of physics at BU, showed the ability to pinpoint and size single H1N1 virus particles. Now, after 4 years of refining the instrumentation with the collaboration of Prof. Connor's group and researchers at the University of Texas Medical Branch, the team has demonstrated simultaneous detection of multiple viruses in blood serum samples—including viruses genetically modified to mimic the behavior of Ebolavirus and the Marburgvirus.
“Others have developed different label-free systems, but none have been nearly as successful in detecting nanoscale viral particles in complex media,” says Prof. Ünlü, referring to typical (e.g., unprocessed blood) samples that may have a mix of viruses, bacteria, and proteins. He added, “Leveraging expertise in optical biosensors and hemorrhagic fever diseases, our collaborative research effort has produced a highly sensitive device.” Also, the system requires little to no sample preparation time and delivers answers in about 1 hour. “By minimizing sample preparation and handling, our system can reduce potential exposure to health care workers,” said Prof. Connor, “And by looking for multiple viruses at the same time, patients can be diagnosed much more effectively.”
The shoebox-sized, battery-operated prototype – the single particle - interferometric reflectance imaging sensor (SP-IRIS) – detects by shining light from multicolor LED sources on viral nanoparticles trapped onto the sensor surface by a coating of virus-specific antibodies. Interference of light reflected from the surface is modified by the presence of the particles, producing a distinct signal that reveals the size and shape of each particle. The system is capable of high-throughput as the sensor surface is very large and can capture the telltale responses of up to a million nanoparticles.
In collaboration with BD Technologies (Research Triangle Park, NC, USA) and the start-up NexGen Arrays (Boston, MA, USA), the team is now working on making SP-IRIS more robust, field-ready, and fast — ideally delivering answers within 30 minutes—through further technology development and preclinical trials. SP-IRIS devices are now being tested in several labs, including a Biosafety Level-4 (BSL-4) lab at the University of Texas Medical Branch equipped to work with hemorrhagic viruses. Other tests will be conducted at BU’s NEIDL once the facility is BSL-4 approved. Based on the current rate of progress, the instrument could be ready to enter the field in 5 years.
The research, by Daaboul GG et al., appeared in the journal ACS Nano, May, 2014.
Related Links:
Boston University
BU National Emerging Infectious Diseases Laboratories (NEIDL)
NexGen Arrays
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







