LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Clinically Significant Yeasts Identified by MALDI-TOF MS Systems

By LabMedica International staff writers
Posted on 24 Sep 2014
Image: The VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system for microbial identification (Photo courtesy of BioMérieux).
Image: The VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry system for microbial identification (Photo courtesy of BioMérieux).
The performance of two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry systems (MALDI-TOF MS) has been evaluated for the identification of clinically significant yeast isolates.

The rapid identification of pathogenic yeast species is helpful to start timely and effective antifungal therapy and this rapid identification can narrow the spectrum of therapeutic options, conceivably prevent treatment with toxic antifungal agents, improve the outcome, and reduce costs.

Microbiologists at Kuwait University (Safat, Kuwait) collected a total of 188 clinically relevant fungal isolates obtained during one year of routine laboratory processing of clinical laboratory in a local hospital. The isolates were obtained from blood culture, bronchoalveolar lavage, cerebrospinal fluid, urine, wound, and high vaginal and endocervical swabs.

The identification of the clinical yeast isolates was initially achieved by VITEK 2 system (bioMérieux; Marcy l’Etoile, France). When necessary, one or more tests were also performed, morphology on Sabouraud dextrose agar (SDA), germ tube test for Candida species, and urease assimilation test for Cryptococcus species (Becton, Dickinson and Company; Sparks, MD, USA). Protein was extracted from the isolates and analyzed on MALDI-TOF Bruker MS (Bruker Biotyper, Bruker Daltonics; Bremen, Germany) and bioMérieux MALDI-TOF VITEK MS.

Accurate identification by VITEK 2 was 94.1% (177/188), by VITEK MS 93.0% (175/188), and by Bruker Biotyper MS 92.6% (174/188). Three isolates were not identified by VITEK MS, while nine Candida orthopsilosis were misidentified as C. parapsilosis, as this species is not present in its database. Eleven isolates were not identified or were wrongly identified by Bruker Biotyper and although another 14 were correctly identified.

The authors concluded that MALDI-TOF MS methods provide a standardized working protocol for the identification of yeasts from clinical specimens. The short turn-around time and expandability of the database demonstrate that this is a suitable first-line test for the identification of yeasts in the routine clinical microbiology laboratory. The study was published in the September 2014 issue of the International Journal of Infectious Diseases.

Related Links:

Kuwait University
BioMérieux
Becton, Dickinson and Company


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Silver Member
PCR Plates
Diamond Shell PCR Plates
Gold Member
Hybrid Pipette
SWITCH

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more