Brain Scanner Shows Infants’ Brains Rehearse Speech Sounds Months Before Their First Words
By LabMedica International staff writers Posted on 30 Jul 2014 |

Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).
New research in 7- and 11-month-old infants revealed that speech sounds stimulate brain regions that coordinate and plan motor movements for speech. The new study suggests that babies’ brains begin establishing the foundation of how to form words long before they actually begin to speak and this may affect the developmental transition.
Infants notice the difference between sounds of all languages until about eight months of age when their brains begin to concentrate only on the sounds they hear around them. It is not known how this transition occurs, but social interactions and caregivers’ use of embellished “parentese” manner of speech appear to help.
The study’s findings were published July 14, 2014, in the Proceedings of the National Academy of Sciences of the United States of America. “Most babies babble by seven months, but don’t utter their first words until after their first birthdays,” said lead author Dr. Patricia Kuhl, who is the co-director of the University of Washington’s (UW; Seattle, USA) Institute for Learning and Brain Sciences. “Finding activation in motor areas of the brain when infants are simply listening is significant, because it means the baby brain is engaged in trying to talk back right from the start and suggests that seven-month-olds’ brains are already trying to figure out how to make the right movements that will produce words.”
Dr. Kuhl and her research colleagues think this practice at motor planning contributes to the transition when babies become more sensitive to their native language. These findings stress the importance of talking to kids during social interactions even if they are not talking back yet. “Hearing us talk exercises the action areas of infants’ brains, going beyond what we thought happens when we talk to them,” Dr. Kuhl said. “Infants’ brains are preparing them to act on the world by practicing how to speak before they actually say a word.”
In the research, infants sat in a brain scanner that measures brain activation through a noninvasive technique called magnetoencephalography (MEG). The brain scanner resembles an egg-shaped old-fashioned hair dryer and is completely safe for infants. The Institute for Learning and Brain Sciences was the first in the world to use such a tool to study babies while they engaged in a task.
Each of the infants, 57 7- and 11- or 12-month-olds, listened to a series of native and foreign language syllables such as “da” and “ta” as researchers recorded brain responses. They listened to sounds in English and in Spanish. The researchers examined brain activity in an auditory area of the brain called the superior temporal gyrus, as well as in Broca’s area and the cerebellum, cortical regions responsible for planning the motor movements required for producing speech.
This pattern of brain activation occurred for sounds in the seven-month-olds’ native language (English) as well as in a non-native language (Spanish), showing that at this early age infants are responding to all speech sounds, whether or not they have heard the sounds before.
In the older infants, brain activation was different. By 11-12 months, babies’ brains increase motor activation to the non-native speech sounds comparative to their native speech, which the researchers interpret as showing that it takes more effort for the baby brain to forecast which movements create non-native speech. This reflects an effect of experience between 7 and 11 months, and suggests that activation in motor brain areas is contributing to the transition in early speech perception.
The study has social implications, suggesting that the slow and exaggerated-style of parentese speech-- “Hiiiii! How are youuuuu?”--may actually prompt infants to try to synthesize utterances themselves and imitate what they heard, uttering something like “Ahhh bah bah baaah.”
“Parentese is very exaggerated, and when infants hear it, their brains may find it easier to model the motor movements necessary to speak,” Dr. Kuhl said.
Related Links:
University of Washington
Infants notice the difference between sounds of all languages until about eight months of age when their brains begin to concentrate only on the sounds they hear around them. It is not known how this transition occurs, but social interactions and caregivers’ use of embellished “parentese” manner of speech appear to help.
The study’s findings were published July 14, 2014, in the Proceedings of the National Academy of Sciences of the United States of America. “Most babies babble by seven months, but don’t utter their first words until after their first birthdays,” said lead author Dr. Patricia Kuhl, who is the co-director of the University of Washington’s (UW; Seattle, USA) Institute for Learning and Brain Sciences. “Finding activation in motor areas of the brain when infants are simply listening is significant, because it means the baby brain is engaged in trying to talk back right from the start and suggests that seven-month-olds’ brains are already trying to figure out how to make the right movements that will produce words.”
Dr. Kuhl and her research colleagues think this practice at motor planning contributes to the transition when babies become more sensitive to their native language. These findings stress the importance of talking to kids during social interactions even if they are not talking back yet. “Hearing us talk exercises the action areas of infants’ brains, going beyond what we thought happens when we talk to them,” Dr. Kuhl said. “Infants’ brains are preparing them to act on the world by practicing how to speak before they actually say a word.”
In the research, infants sat in a brain scanner that measures brain activation through a noninvasive technique called magnetoencephalography (MEG). The brain scanner resembles an egg-shaped old-fashioned hair dryer and is completely safe for infants. The Institute for Learning and Brain Sciences was the first in the world to use such a tool to study babies while they engaged in a task.
Each of the infants, 57 7- and 11- or 12-month-olds, listened to a series of native and foreign language syllables such as “da” and “ta” as researchers recorded brain responses. They listened to sounds in English and in Spanish. The researchers examined brain activity in an auditory area of the brain called the superior temporal gyrus, as well as in Broca’s area and the cerebellum, cortical regions responsible for planning the motor movements required for producing speech.
This pattern of brain activation occurred for sounds in the seven-month-olds’ native language (English) as well as in a non-native language (Spanish), showing that at this early age infants are responding to all speech sounds, whether or not they have heard the sounds before.
In the older infants, brain activation was different. By 11-12 months, babies’ brains increase motor activation to the non-native speech sounds comparative to their native speech, which the researchers interpret as showing that it takes more effort for the baby brain to forecast which movements create non-native speech. This reflects an effect of experience between 7 and 11 months, and suggests that activation in motor brain areas is contributing to the transition in early speech perception.
The study has social implications, suggesting that the slow and exaggerated-style of parentese speech-- “Hiiiii! How are youuuuu?”--may actually prompt infants to try to synthesize utterances themselves and imitate what they heard, uttering something like “Ahhh bah bah baaah.”
“Parentese is very exaggerated, and when infants hear it, their brains may find it easier to model the motor movements necessary to speak,” Dr. Kuhl said.
Related Links:
University of Washington
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse
Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease
Children are experiencing metabolic problems at increasingly younger ages, placing them at higher risk for serious health issues later in life. There is a growing need to identify this risk from birth... Read more
Spinal Fluid Biomarker for Parkinson’s Disease Offers Early and Accurate Diagnosis
Parkinson’s disease is a neurodegenerative condition typically diagnosed at an advanced stage based on clinical symptoms, primarily motor disorders. However, by this time, the brain has already undergone... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
New Test Diagnoses Bacterial Meningitis Quickly and Accurately
Bacterial meningitis is a potentially fatal condition, with one in six patients dying and half of the survivors experiencing lasting symptoms. Therefore, rapid diagnosis and treatment are critical.... Read more
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
AI-Based Model Predicts Kidney Cancer Therapy Response
Each year, nearly 435,000 individuals are diagnosed with clear cell renal cell carcinoma (ccRCC), making it the most prevalent subtype of kidney cancer. When the disease spreads, anti-angiogenic therapies... Read more
Sensitive and Specific DUB Enzyme Assay Kits Require Minimal Setup Without Substrate Preparation
Ubiquitination and deubiquitination are two important physiological processes in the ubiquitin-proteasome system, responsible for protein degradation in cells. Deubiquitinating (DUB) enzymes contain around... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more