We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Induced Stem Cells Show Genetic Abnormalities Not Found in Embryonic Stem Cells

By LabMedica International staff writers
Posted on 15 Jul 2014
Print article
Image: Scanning electron micrograph of cultured human neuron from induced pluripotent stem cell (Photo courtesy of the University of California, San Diego).
Image: Scanning electron micrograph of cultured human neuron from induced pluripotent stem cell (Photo courtesy of the University of California, San Diego).
All stem cells are not created equal: genomic evaluation revealed that the genome of stem cells generated from adult cells (induced pluripotent stem cells or iPS cells) differed considerably from that of "gold standard" human embryonic stem cells (ES cells).

Human pluripotent stem cells hold potential for regenerative medicine, but available cell types have significant limitations. Although ES cells from in vitro fertilized embryos (IVF ES cells) represent the "gold standard," they are genetically distinct from likely transplant recipients, and their use is compromised by ethical and logistical considerations. While autologous iPS cells are freely obtainable, they are prone to epigenetic and transcriptional aberrations.

A team of researchers from the University of California, San Diego (USA), Oregon Health & Science University (Portland, USA) and the Salk Institute for Biological Studies (La Jolla, CA, USA) cooperated to perform a study to determine whether abnormalities found in iPS cells were intrinsic to somatic cell reprogramming or secondary to the reprogramming method. To this end, they prepared genetically matched sets of human IVF ES cells (four lines), iPS cells (seven lines), and two lines of nuclear transfer ES cells (NT ES cells) derived by somatic cell nuclear transfer (SCNT). The 13 cell lines were examined by genome-wide analyses.

Results published in the July 2, 2014, online edition of the journal Nature revealed critical differences in the genomes of stem cells created with the three methods. Specifically, DNA methylation and gene expression patterns in nuclear transfer ES cells more closely resembled those of ES cells than did iPS cells, which revealed alterations apparently caused by the reprogramming process.

“The nuclear transfer ES cells are much more similar to real ES cells than the iPS cells,” said co-senior author Dr. Louise Laurent, assistant professor of reproductive medicine at the University of California, San Diego. “They are more completely reprogrammed and have fewer alterations in gene expression and DNA methylation levels that are attributable to the reprogramming process itself. Our results have shown that widely used iPS cell reprogramming methods make cells that are similar to standard ES cells in broad strokes, but there are important differences when you look really closely. By using the egg cell to do the job, we can get much closer to the real thing. However, not only is nuclear transfer technically difficult, but federal funds cannot be used in experiments involving this procedure. If we can figure out what factors in the egg drive the reprogramming process, maybe we can design a better iPS cell reprogramming method.”

Related Links:

University of California, San Diego
Oregon Health & Science University
Salk Institute for Biological Studies


New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV

Print article

Channels

Clinical Chemistry

view channel
Image: The new ADLM guidance will help healthcare professionals navigate respiratory virus testing in a post-COVID world (Photo courtesy of 123RF)

New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections

Respiratory tract infections, predominantly caused by viral pathogens, are a common reason for healthcare visits. Accurate and swift diagnosis of these infections is essential for optimal patient management.... Read more

Molecular Diagnostics

view channel
Image: The new tests seek to detect mutant DNA in blood samples, indicating the presence of cancer cells (Photo courtesy of Christian Stolte/Weill Cornell)

Advanced Liquid Biopsy Technology Detects Cancer Earlier Than Conventional Methods

Liquid biopsy technology has yet to fully deliver on its significant potential. Traditional methods have focused on a narrow range of cancer-associated mutations that are often present in such low quantities... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Industry

view channel
Image: For 46 years, Roche and Hitachi have collaborated to deliver innovative diagnostic solutions (Photo courtesy of Roche)

Roche and Hitachi High-Tech Extend 46-Year Partnership for Breakthroughs in Diagnostic Testing

Roche (Basel, Switzerland) and Hitachi High-Tech (Tokyo, Japan) have renewed their collaboration agreement, committing to a further 10 years of partnership. This extension brings together their long-standing... Read more
LGC Clinical Diagnostics