LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

High GABA Level Astrocytes Are a New Alzheimer's Disease Biomarker and Drug Target

By LabMedica International staff writers
Posted on 25 Jun 2014
Image: This image shows a microscopic view of the high concentration (red) of gamma-aminobutyric acid (GABA) in the reactive astrocytes (green) in the human brain with Alzheimer\'s disease (Photo courtesy of Dr. Gong Chen, Pennsylvania State University).
Image: This image shows a microscopic view of the high concentration (red) of gamma-aminobutyric acid (GABA) in the reactive astrocytes (green) in the human brain with Alzheimer\'s disease (Photo courtesy of Dr. Gong Chen, Pennsylvania State University).
Cells comprising an abnormal class of brain cells called reactive astrocytes contain high levels of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) and are being eyed by researchers as a potential biomarker and drug target for Alzheimer's disease (AD).

Amyloid plaques and tau tangles are common pathological characteristics of AD. However, drugs designed to reduce production of the Abeta peptides that form amyloid plaques failed to relieve the symptoms of AD patients. Now, a paper published the June 13, 2014, online edition of the journal Nature Communications reported the presence of high GABA content in reactive astrocytes in the dentate gyrus (DG) of a mouse model for AD that resulted in increased tonic inhibition and memory deficit.

Investigators at Pennsylvania State University (University Park, USA) also confirmed the presence of astrocytes with a high GABA content in human AD patient brains. This finding suggested that a high astrocytic GABA level may be a novel biomarker and a potential diagnostic tool for AD.

They also considered the possibility of developing drugs to target these high GABA level astrocytes after it was found that excessive GABA was released through an astrocyte-specific GABA transporter (GAT3/4).

"Our studies of AD mice showed that the high concentration of the GABA neurotransmitter in the reactive astrocytes of the dentate gyrus correlates with the animals' poor performance on tests of learning and memory," said senior author Dr. Gong Chen, professor of biology at Pennsylvania State University. "After we inhibited the astrocytic GABA transporter to reduce GABA inhibition in the brains of the AD mice, we found that they showed better memory capability than the control AD mice. We are very excited and encouraged by this result because it might explain why previous clinical trials failed by targeting amyloid plaques alone. One possible explanation is that while amyloid plaques may be reduced by targeting amyloid proteins, the other downstream alterations triggered by amyloid deposits, such as the excessive GABA inhibition discovered in our study, cannot be corrected by targeting amyloid proteins alone. Our studies suggest that reducing the excessive GABA inhibition to the neurons in the brain's dentate gyrus may lead to a novel therapy for Alzheimer's disease. An ultimate successful therapy may be a cocktail of compounds acting on several drug targets simultaneously."

Related Links:

Pennsylvania State University 


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Automatic Hematology Analyzer
DH-800 Series

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more