X-Ray Crystallography Reveals the Two Faces of Flavivirus Nonstructural Protein
By LabMedica International staff writers Posted on 17 Feb 2014 |

Image: The external face of the Flavivirus NS1 protein (sugars in grey balls) is exposed on infected cell surfaces where it can interact with the immune system. This face is also exposed in secreted NS1 particles present in patient sera. The background image shows artificial membranes coated with the NS1 protein (Photo courtesy of the University of Michigan).
High-resolution X-ray crystallography and electron microscopy have revealed that the Flavivirus NS1 (nonstructural protein 1) has two distinct faces, one that interacts with the interior of the infected host cell and the other that is exposed to antiviral elements in the host's immune system.
Flaviviruses are responsible for several severe diseases of humans including dengue fever, West Nile fever, tick-borne encephalitis, and yellow fever. All the flaviviruses produce nonstructural protein 1 (NS1), which functions in genome replication as an intracellular dimer and in immune system evasion as a secreted hexamer. In general, nonstructural proteins are encoded by the viral genome and are produced in the organisms they infect, but are not packaged into the virus particles. Some of these proteins may play roles within the infected cell during virus replication or act in regulation of virus replication or virus assembly.
Investigators at the University of Michigan (Ann Arbor, USA) and colleagues at Purdue University (Lafayette, IN, USA) chose X-ray crystallography as an approach to developing a better understanding of how NS1 functions.
The investigators isolated and crystallized NS1 from Dengue virus and West Nile virus. They then created a three-dimensional atomic structure map of the protein crystals based on data obtained from X-ray crystallography carried out at the Advanced Photon Source at the Argonne National Laboratory (Illinois, USA). Subsequently, electron microscopy was used to elucidate how NS1 associated with membranes of infected cells.
The investigators reported the crystal structures for full-length, glycosylated NS1 from West Nile and dengue viruses in the February 6, 2014, online edition of the journal Science. Their results revealed that the NS1 hexamer in crystal structures was similar to a solution hexamer visualized by single-particle electron microscopy. Recombinant NS1 bound to lipid bilayers and remodeled large liposomes into lipoprotein nanoparticles. The NS1 structures revealed distinct domains for membrane association of the dimer and interactions with the immune system, and will form a basis for elucidating the molecular mechanism of NS1 function.
"Isolating the protein in order to study it has been a challenge for researchers," said senior author Dr. Janet Smith, professor of biological chemistry at the University of Michigan. "Once we discovered how to do that, it crystallized beautifully. Seeing the design of this key protein provides a target for a potential vaccine or even a therapeutic drug."
"The two faces of NS1 define the regions responsible for its two major functions," said Dr. Smith. "This understanding will guide future research into dissecting and targeting these regions in disease treatment or prevention. We are now collaborating with the Purdue virologists to understand exactly how the two faces of NS1 help the virus survive and thrive in patients. These studies are the next steps toward a vaccine or an antiviral drug."
Related Links:
University of Michigan
Purdue University
Argonne National Laboratory
Flaviviruses are responsible for several severe diseases of humans including dengue fever, West Nile fever, tick-borne encephalitis, and yellow fever. All the flaviviruses produce nonstructural protein 1 (NS1), which functions in genome replication as an intracellular dimer and in immune system evasion as a secreted hexamer. In general, nonstructural proteins are encoded by the viral genome and are produced in the organisms they infect, but are not packaged into the virus particles. Some of these proteins may play roles within the infected cell during virus replication or act in regulation of virus replication or virus assembly.
Investigators at the University of Michigan (Ann Arbor, USA) and colleagues at Purdue University (Lafayette, IN, USA) chose X-ray crystallography as an approach to developing a better understanding of how NS1 functions.
The investigators isolated and crystallized NS1 from Dengue virus and West Nile virus. They then created a three-dimensional atomic structure map of the protein crystals based on data obtained from X-ray crystallography carried out at the Advanced Photon Source at the Argonne National Laboratory (Illinois, USA). Subsequently, electron microscopy was used to elucidate how NS1 associated with membranes of infected cells.
The investigators reported the crystal structures for full-length, glycosylated NS1 from West Nile and dengue viruses in the February 6, 2014, online edition of the journal Science. Their results revealed that the NS1 hexamer in crystal structures was similar to a solution hexamer visualized by single-particle electron microscopy. Recombinant NS1 bound to lipid bilayers and remodeled large liposomes into lipoprotein nanoparticles. The NS1 structures revealed distinct domains for membrane association of the dimer and interactions with the immune system, and will form a basis for elucidating the molecular mechanism of NS1 function.
"Isolating the protein in order to study it has been a challenge for researchers," said senior author Dr. Janet Smith, professor of biological chemistry at the University of Michigan. "Once we discovered how to do that, it crystallized beautifully. Seeing the design of this key protein provides a target for a potential vaccine or even a therapeutic drug."
"The two faces of NS1 define the regions responsible for its two major functions," said Dr. Smith. "This understanding will guide future research into dissecting and targeting these regions in disease treatment or prevention. We are now collaborating with the Purdue virologists to understand exactly how the two faces of NS1 help the virus survive and thrive in patients. These studies are the next steps toward a vaccine or an antiviral drug."
Related Links:
University of Michigan
Purdue University
Argonne National Laboratory
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreMolecular Diagnostics
view channel
Newborn Genomic Screening Enables More Lifesaving Diagnoses
Early detection of rare genetic conditions in newborns can be lifesaving, yet current screening methods identify only a limited number of disorders. The standard heel-prick test screens for just 32 conditions,... Read more
Blood Protein Tests Could Identify Distinct Molecular Fingerprints of Multiple Diseases
Accurately distinguishing disease-related molecular changes from common biological variations has long been a challenge in clinical diagnostics, often leading to false alarms in blood test results.... Read moreHematology
view channel
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more
Platelets Could Improve Early and Minimally Invasive Detection of Cancer
Platelets are widely recognized for their role in blood clotting and scab formation, but they also play a crucial role in immune defense by detecting pathogens and recruiting immune cells.... Read more
Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment
Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read moreImmunology
view channel
Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more
Luminescent Probe Measures Immune Cell Activity in Real Time
The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more
Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
When a patient enters the emergency department in critical condition, clinicians must rapidly decide whether the patient has an infection, whether it is bacterial or viral, and whether immediate treatment... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
Determining the genetic profile of brain tumors during surgery is crucial for improving patient outcomes, but conventional analysis methods can take up to two days, delaying critical decisions.... Read more
New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
Skin cancer is the most common malignancy worldwide, and accurately assessing tumor invasion or treatment response remains a major clinical challenge. Current imaging methods, such as confocal microscopy... Read more
Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
Glioblastoma (GBM) is the most aggressive form of brain cancer, known for rapid growth, recurrence, and resistance to treatment. Understanding how tumors respond to therapy remains challenging since imaging... Read more
High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
Pancreatic neuroendocrine neoplasms (PNENs) are rare cancers that affect hormone-producing cells in the pancreas. Although uncommon, their incidence has been increasing, and surgery remains the only curative option.... Read moreTechnology
view channel
Acoustofluidic Device to Transform Point-Of-Care sEV-Based Diagnostics
Rapid and sensitive detection of small extracellular vesicles (sEVs)—key biomarkers in cancer and organ health monitoring—remains challenging due to the need for multiple preprocessing steps and bulky... Read more
AI Algorithm Assesses Progressive Decline in Kidney Function
Chronic kidney disease (CKD) affects more than 700 million people worldwide and remains a major global health challenge. The condition often progresses silently, and many patients remain undiagnosed until... Read more
Taste-Based Influenza Test Could Replace Nasal Swabs with Chewing Gum
Influenza is one of the most dangerous infectious diseases worldwide, claiming around half a million lives each year. What makes it particularly insidious is that flu viruses are contagious even before... Read more
3D Micro-Printed Sensors to Advance On-Chip Biosensing for Early Disease Detection
Early-stage disease diagnosis depends on the ability to detect biomarkers with exceptional sensitivity and precision. However, traditional biosensing technologies struggle with achieving this at the micro-scale,... Read moreIndustry
view channel
Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders
Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes
Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
GSI Group Acquires Blood Processing Equipment Manufacturer GenesisBPS
Blood processing and storage are vital to healthcare and clinical practice, ensuring safe transfusions and cellular therapies. However, hospitals and laboratories worldwide face challenges in maintaining... Read more