LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Novel Approach Predicts Outcomes in Heart Failure Patients

By LabMedica International staff writers
Posted on 07 Jan 2014
Image: A nuclear magnetic resonance tube with a protein sample (Photo courtesy of Kjaergaard).
Image: A nuclear magnetic resonance tube with a protein sample (Photo courtesy of Kjaergaard).
A new method has been identified that determines whether a patient's heart will fail, which in the future may help physicians better treat patients and tailor therapeutic interventions.

This novel method tests energy metabolism in the heart and has proved to be a significant predictor of clinical outcomes, independent of a patient's symptoms, race, or strength of the heart and helps determine which patients with heart failure (HF) will do well and which patients will not.

Scientists at the Johns Hopkins University School of Medicine (Baltimore, MD, USA) measured energy metabolism in 58 heart failure patients with nonischemic cardiomyopathy, or heart failure not due to blocked arteries and 17 healthy subjects using magnetic resonance spectroscopy (MRS). They then followed these patients for a median of 4.7 years, recording any hospitalizations, heart transplantation, placement of a ventricular assist device and death from all causes.

The investigators looked at adenosine triphosphate (ATP), an energy source for heart muscle cells, and an energy reserve called creatine kinase (CK), an enzyme that interacts with ATP to keep the energy supply constant in a beating heart. They measured the rate of ATP synthesis through CK, called CK flux, using MRS (GE Healthcare Technologies, Pittsburgh, PA, USA). They found that measurements of CK flux were significantly lower in heart failure patients whose condition had worsened.

Gurusher Panjrath, MD, an assistant professor of medicine and co-lead author of the study said, “While various used methods are currently used for prediction, none of these methods are reflective of the underlying mechanism in the weak heart. Furthermore, some of these measures are not very consistent in their predictive ability. There is a need for newer methods, which could potentially be more specific and reproducible. By targeting impaired energy metabolism, it may also be possible in the future to develop and tailor therapies to this new target.” The study was published on December 11, 2013, in the journal Science Translational Medicine.

Related Links:

Johns Hopkins University School of Medicine
GE Healthcare Technologies 


Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
Clinical Chemistry System
P780

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more