FDA Clears System Enabling Identification of Nearly 200 Pathogenic Microbes, Reduces Time to Identification
|
By LabMedica International staff writers Posted on 03 Sep 2013 |

Image: bioMerieux’s “VIVEK MS” system for identification of pathogenic microbes (Photo courtesy of bioMerieux).
A mass spectrometry system for automated identification of bacteria and yeasts, covering the vast majority of microbial infections currently afflicting humans, has now been cleared for clinical use in the USA.
The US Food and Drug Administration (FDA; Silver Spring, MD, USA) has granted its 510(k) de novo clearance for the “VITEK MS” system produced by bioMérieux, Inc. (Marcy L’Etoile, France) at bioMérieux USA (Durham, NC, USA). The system provides simple, rapid identification of multiple—currently up to 193—pathogenic microorganisms in a single automated testing series. It can identify yeasts such as those from the Candida, Cryptococcus, and Malassezia groups, and bacteria such as those from the Staphylococcaceae, Streptococcaceae, Enterobacteriaceae, Pseudomonadaceae, and Bacteroidaceae groups.
“The ability for laboratories to use one device to identify almost 200 different microorganisms is a significant advance in the timely identification of pathogenic microorganisms,” said Alberto Gutierrez, PhD and director of the Office of In Vitro Diagnostics and Radiological Health at FDA’s Center for Devices and Radiological Health. Compared to identification methods requiring abundant microorganism growth cultured from patient samples, this system requires only a small amount, such that testing can begin as soon as growth is visible, generally within 18-24 hours; traditional methods can take up to five days.
The FDA reviewed the VITEK MS through its de novo classification process. Its decision was based on results of a multicenter study of 7,068 clinical isolates covering the most important categories of microbial pathogens. Compared to sequencing and biochemical testing, VITEK MS correctly identified the group or family 93.6% of the time, and 87.5% to species level. It gave a “no identification” result for 3.2% of the microorganisms. Of all test results, only 0.8% was incorrect and 2.4% were low discrimination with no correct result.
In another study, separate from the FDA petition, a team from the Washington University School of Medicine tested VITEK MS by analyzing a 10-year collection of clinical samples initially difficult to identify. “We pulled these samples from the freezer and the answer was very exciting. Nearly all of the isolates were able to be identified with high accuracy in a matter of moments using a single method: MALDI-TOF MS,” said Dr. Carey-Ann Burnham, assistant professor of Pathology and Immunology at WUSM and medical director of Microbiology at Barnes Jewish Hospital.
The VITEK MS is based on state-of-the-art MALDI-TOF mass spectrometry technology. This, along with a proprietary algorithm that further increases accuracy, enables identification by comparing high-resolution spectra data to a database library owned by bioMérieux. Sample preparation is simple and quick—no DNA extraction or purification—a very small amount of microorganism is placed onto a target slide, a ready-to-use matrix solution added, the slide inserted, and identification results are then displayed within minutes. A unique preparation station provides flexibility that allows multiple users to work in parallel for high-throughput capability. bioMérieux also offers integrated workflow solutions with “VITEK 2”, providing connectivity between microbe identification with VITEK MS and antibiotic susceptibility testing with VITEK 2.
VITEK MS is indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of infections.
Related Links:
US Food and Drug Administration
bioMérieux
The US Food and Drug Administration (FDA; Silver Spring, MD, USA) has granted its 510(k) de novo clearance for the “VITEK MS” system produced by bioMérieux, Inc. (Marcy L’Etoile, France) at bioMérieux USA (Durham, NC, USA). The system provides simple, rapid identification of multiple—currently up to 193—pathogenic microorganisms in a single automated testing series. It can identify yeasts such as those from the Candida, Cryptococcus, and Malassezia groups, and bacteria such as those from the Staphylococcaceae, Streptococcaceae, Enterobacteriaceae, Pseudomonadaceae, and Bacteroidaceae groups.
“The ability for laboratories to use one device to identify almost 200 different microorganisms is a significant advance in the timely identification of pathogenic microorganisms,” said Alberto Gutierrez, PhD and director of the Office of In Vitro Diagnostics and Radiological Health at FDA’s Center for Devices and Radiological Health. Compared to identification methods requiring abundant microorganism growth cultured from patient samples, this system requires only a small amount, such that testing can begin as soon as growth is visible, generally within 18-24 hours; traditional methods can take up to five days.
The FDA reviewed the VITEK MS through its de novo classification process. Its decision was based on results of a multicenter study of 7,068 clinical isolates covering the most important categories of microbial pathogens. Compared to sequencing and biochemical testing, VITEK MS correctly identified the group or family 93.6% of the time, and 87.5% to species level. It gave a “no identification” result for 3.2% of the microorganisms. Of all test results, only 0.8% was incorrect and 2.4% were low discrimination with no correct result.
In another study, separate from the FDA petition, a team from the Washington University School of Medicine tested VITEK MS by analyzing a 10-year collection of clinical samples initially difficult to identify. “We pulled these samples from the freezer and the answer was very exciting. Nearly all of the isolates were able to be identified with high accuracy in a matter of moments using a single method: MALDI-TOF MS,” said Dr. Carey-Ann Burnham, assistant professor of Pathology and Immunology at WUSM and medical director of Microbiology at Barnes Jewish Hospital.
The VITEK MS is based on state-of-the-art MALDI-TOF mass spectrometry technology. This, along with a proprietary algorithm that further increases accuracy, enables identification by comparing high-resolution spectra data to a database library owned by bioMérieux. Sample preparation is simple and quick—no DNA extraction or purification—a very small amount of microorganism is placed onto a target slide, a ready-to-use matrix solution added, the slide inserted, and identification results are then displayed within minutes. A unique preparation station provides flexibility that allows multiple users to work in parallel for high-throughput capability. bioMérieux also offers integrated workflow solutions with “VITEK 2”, providing connectivity between microbe identification with VITEK MS and antibiotic susceptibility testing with VITEK 2.
VITEK MS is indicated for use in conjunction with other clinical and laboratory findings to aid in the diagnosis of infections.
Related Links:
US Food and Drug Administration
bioMérieux
Latest Technology News
- Robotic Technology Unveiled for Automated Diagnostic Blood Draws
- ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
- Aptamer Biosensor Technology to Transform Virus Detection
- AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
- AI-Generated Sensors Open New Paths for Early Cancer Detection
- Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
- AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
- Diagnostic Chip Monitors Chemotherapy Effectiveness for Brain Cancer
- Machine Learning Models Diagnose ALS Earlier Through Blood Biomarkers
- Artificial Intelligence Model Could Accelerate Rare Disease Diagnosis
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







