Largest Data Set of Cancer-Related Genetic Variations Generated for Researchers
|
By LabMedica International staff writers Posted on 29 Jul 2013 |
US scientists have generated a data set of cancer-specific genetic variations and are making these data available to the research community.
The investigators, from the US National Cancer Institute (NCI; Bethesda, MD, USA), published their study’s findings July 15, 2013, online in Cancer Research, a journal of the American Association for Cancer Research.
This new technology will help cancer researchers better illuminate drug response and resistance to cancer treatments. “To date, this is the largest database worldwide, containing six billion data points that connect drugs with genomic variants for the whole human genome across cell lines from nine tissues of origin, including breast, ovary, prostate, colon, lung, kidney, brain, blood, and skin,” said Yves Pommier, MD, PhD, chief of the laboratory of molecular pharmacology at the NCI in an interview. “We are making this data set public for the greater community to use and analyze. Opening this extensive data set to researchers will expand our knowledge and understanding of tumorigenesis, as more and more cancer-related gene aberrations are discovered. This comes at a great time, because genomic medicine is becoming a reality, and I am very hopeful this valuable information will change the way we use drugs for precision medicine.”
Dr. Pommier and colleagues conducted whole-exome sequencing of the NCI-60 human cancer cell-line panel, which is an assortment of 60 human cancer cell lines, and generated a comprehensive list of cancer-specific genetic variations. Early research conducted by the researchers show that the extensive data set has the potential to greatly enhance understanding of the links between specific cancer-related genetic variations and drug response, which will hasten the drug development process.
The NCI-60 human cancer cell-line panel is used extensively by cancer researchers to discover novel anticancer drugs. To conduct whole-exome sequencing, Dr. Pommier and his NCI team extracted DNA from the 60 different cell lines from tumors of the lung, colon, brain, ovary, prostate, breast, and kidney, as well as melanoma and leukemia, and cataloged the genetic coding variants for the complete human genome. The genetic variations identified were of two types: type I variants corresponding to variants found in the normal population, and type II variants, which are cancer-specific.
The scientists then employed the Super Learner algorithm to predict the sensitivity of cells harboring type II variants to 103 anticancer drugs approved by the US Food and Drug Administration (FDA) and an additional 207 investigational new pharmaceutical agents. They were able to assess the correlations between key cancer-related genes and clinically pertinent anticancer drugs, and predict the outcome.
The data generated in this project provide a way to identify new determinants of response and processes of drug resistance, and offer opportunities to target genomic defects and overcome acquired resistance, according to Dr. Pommier. To accomplish this, the researchers are making these data available to all researchers by way of two database portals, called the CellMiner database and the Ingenuity systems database.
Related Links:
US National Cancer Institute
The investigators, from the US National Cancer Institute (NCI; Bethesda, MD, USA), published their study’s findings July 15, 2013, online in Cancer Research, a journal of the American Association for Cancer Research.
This new technology will help cancer researchers better illuminate drug response and resistance to cancer treatments. “To date, this is the largest database worldwide, containing six billion data points that connect drugs with genomic variants for the whole human genome across cell lines from nine tissues of origin, including breast, ovary, prostate, colon, lung, kidney, brain, blood, and skin,” said Yves Pommier, MD, PhD, chief of the laboratory of molecular pharmacology at the NCI in an interview. “We are making this data set public for the greater community to use and analyze. Opening this extensive data set to researchers will expand our knowledge and understanding of tumorigenesis, as more and more cancer-related gene aberrations are discovered. This comes at a great time, because genomic medicine is becoming a reality, and I am very hopeful this valuable information will change the way we use drugs for precision medicine.”
Dr. Pommier and colleagues conducted whole-exome sequencing of the NCI-60 human cancer cell-line panel, which is an assortment of 60 human cancer cell lines, and generated a comprehensive list of cancer-specific genetic variations. Early research conducted by the researchers show that the extensive data set has the potential to greatly enhance understanding of the links between specific cancer-related genetic variations and drug response, which will hasten the drug development process.
The NCI-60 human cancer cell-line panel is used extensively by cancer researchers to discover novel anticancer drugs. To conduct whole-exome sequencing, Dr. Pommier and his NCI team extracted DNA from the 60 different cell lines from tumors of the lung, colon, brain, ovary, prostate, breast, and kidney, as well as melanoma and leukemia, and cataloged the genetic coding variants for the complete human genome. The genetic variations identified were of two types: type I variants corresponding to variants found in the normal population, and type II variants, which are cancer-specific.
The scientists then employed the Super Learner algorithm to predict the sensitivity of cells harboring type II variants to 103 anticancer drugs approved by the US Food and Drug Administration (FDA) and an additional 207 investigational new pharmaceutical agents. They were able to assess the correlations between key cancer-related genes and clinically pertinent anticancer drugs, and predict the outcome.
The data generated in this project provide a way to identify new determinants of response and processes of drug resistance, and offer opportunities to target genomic defects and overcome acquired resistance, according to Dr. Pommier. To accomplish this, the researchers are making these data available to all researchers by way of two database portals, called the CellMiner database and the Ingenuity systems database.
Related Links:
US National Cancer Institute
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Study Compares Analytical Performance of Quantitative Hepatitis B Surface Antigen Assays
Hepatitis B virus (HBV) continues to pose a significant global health challenge, with chronic infection affecting hundreds of millions of people despite effective vaccines and antiviral therapies.... Read more
Blood Test Could Predict and Identify Early Relapses in Myeloma Patients
Multiple myeloma is an incurable cancer of the bone marrow, and while many patients now live for more than a decade after diagnosis, a significant proportion relapse much earlier with poor outcomes.... Read moreMolecular Diagnostics
view channel
Blood Test Could Enable Earlier Detection of Liver Cancer Recurrence After Transplant
Liver cancer is a leading cause of cancer deaths worldwide, with more than 800,000 diagnoses and over 700,000 deaths each year. Disease recurrence after liver transplantation is common and is associated... Read more
AI Accurately Predicts Prematurity Complications in Newborns from Blood Samples
Premature birth is a leading cause of infant illness and long-term disability. However, doctors still struggle to predict which newborns will develop serious complications affecting the brain, lungs, eyes,... Read moreHematology
view channel
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreImmunology
view channelBlood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read moreMicrobiology
view channelAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read more
New Test Measures How Effectively Antibiotics Kill Bacteria
Antibiotics are typically evaluated by how well they inhibit bacterial growth in laboratory tests, but growth inhibition does not always mean the bacteria are actually killed. Some pathogens can survive... Read morePathology
view channel
New X-Ray Method Promises Advances in Histology
Histological tissue analysis is a cornerstone of medical diagnostics, allowing doctors to identify tumors and other pathological changes using stained tissue slices viewed under a microscope.... Read more
Single-Cell Profiling Technique Could Guide Early Cancer Detection
Cancer often develops silently over many years, as individual cells acquire mutations that give them a growth advantage long before a tumor forms. These pre-malignant cells can exist alongside normal cells... Read moreTechnology
view channelAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channel
WHX Labs Dubai to Gather Global Experts in Antimicrobial Resistance at Inaugural AMR Leaders’ Summit
World Health Expo (WHX) Labs in Dubai (formerly Medlab Middle East), which will be held at Dubai World Trade Centre from 10-13 February, will address the growing global threat of antimicrobial resistance... Read more







