Noninvasive Fluorescent Molecular Imaging Probes Identify Lymph Node Metastasis
By LabMedica International staff writers Posted on 30 Jan 2012 |
Using two cell surface markers found to be highly expressed in breast cancer lymph node metastases, scientists have developed targeted, fluorescent molecular imaging probes that can noninvasively detect breast cancer lymph node metastases. The new procedure could spare breast cancer patients invasive and ineffective sentinel lymph node (SLN) biopsies and surgery-associated negative side effects.
Their study was published in the January 1, 2012, issue of the journal Clinical Cancer Research, a publication of the American Association for Cancer Research. “The majority of breast cancer patients, up to 74%, who undergo SLN biopsy are found to be negative for axillary nodal, or ALN, metastases,” said corresponding author David L. Morse, PhD, an associate member at the Moffitt Cancer Center (Tampa, FL, USA) whose research fields include experimental therapeutics and diagnostic imaging. “Determining the presence or absence of ALN metastasis is critical to breast cancer staging and prognosis. Because of the unreliability of the SLN biopsy and its potential for adverse effects, a noninvasive, more accurate method to assess lymph node involvement is needed.”
The investigators noted that the postoperative complications to the SLN biopsy can include lymphedema, seroma formation, sensory nerve injury, and limitations in patient range of motion. In addition, biopsies fail to identify disease in axillary lymph nodes in 5%-10% of patients.
In developing targeted molecular probes to detect breast cancer in axillary lymph nodes, the researchers from Moffitt, the University of Arizona (Tucson, USA), and University of Florida (Gainesville, USA) utilized two surface cell markers--CAIX and CAXII (overexpression of carbonic anhydrase IX and XII). CAIX is a cell surface marker known to be “highly and broadly expressed in breast cancer lymph node metastases” and absent in normal tissues.
CAIX and CAXII are both integral plasma membrane proteins with large extracellular components that are accessible for binding of targeted imaging probes, explained Morse. In addition, several studies have shown that CAIX expression is associated with negative prognosis and resistance to chemo and radiation therapy for breast cancer. CAXII is a protein expressed in over 75% of axillary lymph node metastases.
The researchers then went on to develop their targeting agents by using monoclonal antibodies specific for binding CAIX and CAXII, both of which are known to promote tumor growth.
According to the researchers, a number of noninvasive optical imaging modalities for SLN evaluation have been studied, but the approaches have lacked the ability to target tumor metastasis biomarkers. “These methods provide only anatomic maps and do not detect tumor cells present in lymph nodes,” explained Dr. Morse. “Using mouse models of breast cancer metastasis and a novel, monoclonal antibody-based molecular imaging agents, we developed a targeted, noninvasive method to detect ALN metastasis using fluorescence imaging.”
In addition to the imaging study with mice, the researchers also reported that the combination of CAIX and CAXII covered 100% of patient-donated samples used in their tissue microarray (TMA) study.
“The imaging probes detected tumor cells in ALNs with high sensitivity,” explained Dr. Morse. “Either CAIX or CAXII were expressed in 100% of the breast cancer lymph node metastasis samples we surveyed in this study. These imaging probes have potential for providing a noninvasive way to stage breast cancer in the clinic without unneeded and costly surgery.”
Related Links:
Moffitt Cancer Center
University of Arizona
University of Florida
Their study was published in the January 1, 2012, issue of the journal Clinical Cancer Research, a publication of the American Association for Cancer Research. “The majority of breast cancer patients, up to 74%, who undergo SLN biopsy are found to be negative for axillary nodal, or ALN, metastases,” said corresponding author David L. Morse, PhD, an associate member at the Moffitt Cancer Center (Tampa, FL, USA) whose research fields include experimental therapeutics and diagnostic imaging. “Determining the presence or absence of ALN metastasis is critical to breast cancer staging and prognosis. Because of the unreliability of the SLN biopsy and its potential for adverse effects, a noninvasive, more accurate method to assess lymph node involvement is needed.”
The investigators noted that the postoperative complications to the SLN biopsy can include lymphedema, seroma formation, sensory nerve injury, and limitations in patient range of motion. In addition, biopsies fail to identify disease in axillary lymph nodes in 5%-10% of patients.
In developing targeted molecular probes to detect breast cancer in axillary lymph nodes, the researchers from Moffitt, the University of Arizona (Tucson, USA), and University of Florida (Gainesville, USA) utilized two surface cell markers--CAIX and CAXII (overexpression of carbonic anhydrase IX and XII). CAIX is a cell surface marker known to be “highly and broadly expressed in breast cancer lymph node metastases” and absent in normal tissues.
CAIX and CAXII are both integral plasma membrane proteins with large extracellular components that are accessible for binding of targeted imaging probes, explained Morse. In addition, several studies have shown that CAIX expression is associated with negative prognosis and resistance to chemo and radiation therapy for breast cancer. CAXII is a protein expressed in over 75% of axillary lymph node metastases.
The researchers then went on to develop their targeting agents by using monoclonal antibodies specific for binding CAIX and CAXII, both of which are known to promote tumor growth.
According to the researchers, a number of noninvasive optical imaging modalities for SLN evaluation have been studied, but the approaches have lacked the ability to target tumor metastasis biomarkers. “These methods provide only anatomic maps and do not detect tumor cells present in lymph nodes,” explained Dr. Morse. “Using mouse models of breast cancer metastasis and a novel, monoclonal antibody-based molecular imaging agents, we developed a targeted, noninvasive method to detect ALN metastasis using fluorescence imaging.”
In addition to the imaging study with mice, the researchers also reported that the combination of CAIX and CAXII covered 100% of patient-donated samples used in their tissue microarray (TMA) study.
“The imaging probes detected tumor cells in ALNs with high sensitivity,” explained Dr. Morse. “Either CAIX or CAXII were expressed in 100% of the breast cancer lymph node metastasis samples we surveyed in this study. These imaging probes have potential for providing a noninvasive way to stage breast cancer in the clinic without unneeded and costly surgery.”
Related Links:
Moffitt Cancer Center
University of Arizona
University of Florida
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more
Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
Chimeric antigen receptor (CAR) T-cell therapy has emerged as one of the most promising recent developments in the treatment of blood cancers. However, over half of non-Hodgkin lymphoma (NHL) patients... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more