Chronic Anemia Cured by Gene Therapy Using Genetically Engineered Blood Vessels
|
By LabMedica International staff writers Posted on 29 Nov 2011 |
A novel gene therapeutic method employing genetically engineered blood vessels to deliver erythropoietin (EPO) to anemic mice was described in a proof-of-concept study.
Investigators at Harvard Medical School (Boston, MA, USA) created a new type of blood vessel by isolating endothelial colony-forming cells from human blood and then inserting into these cells the gene that encodes EPO. The gene that was inserted was part of a complex that included an “off/on switch” activated by the drug doxycycline.
The genetically engineered colony-forming cells were injected under the skin of immunodeficient mice that had been rendered anemic by radiation treatment (as often occurs in cancer patients) or through loss of kidney tissue (modeling chronic kidney failure).
Results published in the November 17, 2011, issue of the journal Blood revealed that the transplanted cells spontaneously formed networks of blood vessels that became integrated into the animals' own circulatory system. EPO produced by the genetically engineered cells was then released directly into the bloodstream. EPO production could be controlled by administrating or withholding doxycycline.
“Blood-vessel implants are an ideal platform technology for gene therapy applications whose goal is systemic drug delivery,” said senior author Dr. Juan M. Melero-Martin, assistant professor of surgery at Harvard Medical School. “Blood vessels are one of the few tissues where we have good control over engraftment. Endothelial cells are easily isolated from blood, are good at assembling themselves into blood vessels, and are ideal for releasing compounds into the bloodstream, since they line the blood vessels.”
“Such drugs are currently made in bioreactors by engineered cells, and are very expensive to make in large amounts. The paradigm shift here is, why we do not instruct your own cells to be the factory?” said Dr. Melero-Martin.
If this approach can be applied in humans, it would relieve patients from having to receive frequent EPO injections, thus reducing the medical costs associated with the management of anemia.
Related Links:
Harvard Medical School
Investigators at Harvard Medical School (Boston, MA, USA) created a new type of blood vessel by isolating endothelial colony-forming cells from human blood and then inserting into these cells the gene that encodes EPO. The gene that was inserted was part of a complex that included an “off/on switch” activated by the drug doxycycline.
The genetically engineered colony-forming cells were injected under the skin of immunodeficient mice that had been rendered anemic by radiation treatment (as often occurs in cancer patients) or through loss of kidney tissue (modeling chronic kidney failure).
Results published in the November 17, 2011, issue of the journal Blood revealed that the transplanted cells spontaneously formed networks of blood vessels that became integrated into the animals' own circulatory system. EPO produced by the genetically engineered cells was then released directly into the bloodstream. EPO production could be controlled by administrating or withholding doxycycline.
“Blood-vessel implants are an ideal platform technology for gene therapy applications whose goal is systemic drug delivery,” said senior author Dr. Juan M. Melero-Martin, assistant professor of surgery at Harvard Medical School. “Blood vessels are one of the few tissues where we have good control over engraftment. Endothelial cells are easily isolated from blood, are good at assembling themselves into blood vessels, and are ideal for releasing compounds into the bloodstream, since they line the blood vessels.”
“Such drugs are currently made in bioreactors by engineered cells, and are very expensive to make in large amounts. The paradigm shift here is, why we do not instruct your own cells to be the factory?” said Dr. Melero-Martin.
If this approach can be applied in humans, it would relieve patients from having to receive frequent EPO injections, thus reducing the medical costs associated with the management of anemia.
Related Links:
Harvard Medical School
Latest BioResearch News
- Genome Analysis Predicts Likelihood of Neurodisability in Oxygen-Deprived Newborns
- Gene Panel Predicts Disease Progession for Patients with B-cell Lymphoma
- New Method Simplifies Preparation of Tumor Genomic DNA Libraries
- New Tool Developed for Diagnosis of Chronic HBV Infection
- Panel of Genetic Loci Accurately Predicts Risk of Developing Gout
- Disrupted TGFB Signaling Linked to Increased Cancer-Related Bacteria
- Gene Fusion Protein Proposed as Prostate Cancer Biomarker
- NIV Test to Diagnose and Monitor Vascular Complications in Diabetes
- Semen Exosome MicroRNA Proves Biomarker for Prostate Cancer
- Genetic Loci Link Plasma Lipid Levels to CVD Risk
- Newly Identified Gene Network Aids in Early Diagnosis of Autism Spectrum Disorder
- Link Confirmed between Living in Poverty and Developing Diseases
- Genomic Study Identifies Kidney Disease Loci in Type I Diabetes Patients
- Liquid Biopsy More Effective for Analyzing Tumor Drug Resistance Mutations
- New Liquid Biopsy Assay Reveals Host-Pathogen Interactions
- Method Developed for Enriching Trophoblast Population in Samples
Channels
Clinical Chemistry
view channel
Compact Raman Imaging System Detects Subtle Tumor Signals
Accurate cancer diagnosis often depends on labor-intensive tissue staining and expert pathological review, which can delay results and limit access to rapid screening. These conventional methods also make... Read more
Noninvasive Blood-Glucose Monitoring to Replace Finger Pricks for Diabetics
People with diabetes often need to measure their blood glucose multiple times a day, most commonly through finger-prick blood tests or implanted sensors. These methods can be painful, inconvenient, and... Read moreMolecular Diagnostics
view channel
Urine Test Could Reveal Real Age and Life Span
Chronological age does not always reflect how quickly the body is aging, as biological age is shaped by genetics, stress, sleep, nutrition, and lifestyle factors such as smoking. A higher biological age... Read more
Genomic Test Identifies African Americans at Risk for Early Prostate Cancer Recurrence
Prostate cancer is one of the most commonly diagnosed cancers in men and a leading cause of cancer-related death, particularly in the United States. African American men face a disproportionately higher... Read moreHematology
view channel
MRD Tests Could Predict Survival in Leukemia Patients
Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more
Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk
Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more
Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients
Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read moreImmunology
view channel
Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
Immunotherapy has transformed cancer treatment, but only a small proportion of patients experience lasting benefit, with response rates often remaining between 10% and 20%. Clinicians currently lack reliable... Read more
Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
Colon cancer remains a major cause of cancer-related illness, with many patients facing relapse even after surgery and chemotherapy. Up to 40% of people with stage III disease experience recurrence, highlighting... Read moreMicrobiology
view channel
New UTI Diagnosis Method Delivers Antibiotic Resistance Results 24 Hours Earlier
Urinary tract infections affect around 152 million people every year, making them one of the most common bacterial infections worldwide. In routine medical practice, diagnosis often relies on rapid urine... Read more
Breakthroughs in Microbial Analysis to Enhance Disease Prediction
Microorganisms shape human health, ecosystems, and the planet’s climate, yet identifying them and understanding how they are related remains a major scientific challenge. Even with modern DNA sequencing,... Read morePathology
view channel
Genetics and AI Improve Diagnosis of Aortic Stenosis
Aortic stenosis is a progressive narrowing of the aortic valve that restricts blood flow from the heart and can be fatal if left untreated. There are currently no medical therapies that can prevent or... Read more
AI Tool Simultaneously Identifies Genetic Mutations and Disease Type
Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Rapid Low-Cost Tests Can Prevent Child Deaths from Contaminated Medicinal Syrups
Medicinal syrups contaminated with toxic chemicals have caused the deaths of hundreds of children worldwide, exposing a critical gap in how these products are tested before reaching patients.... Read more
Tumor Signals in Saliva and Blood Enable Non-Invasive Monitoring of Head and Neck Cancer
Head and neck cancers are among the most aggressive malignancies worldwide, with nearly 900,000 new cases diagnosed each year. Monitoring these cancers for recurrence or relapse typically relies on tissue... Read moreTechnology
view channel
Pioneering Blood Test Detects Lung Cancer Using Infrared Imaging
Detecting cancer early and tracking how it responds to treatment remains a major challenge, particularly when cancer cells are present in extremely low numbers in the bloodstream. Circulating tumor cells... Read more
AI Predicts Colorectal Cancer Survival Using Clinical and Molecular Features
Colorectal cancer is one of the most common and deadly cancers worldwide, and accurately predicting patient survival remains a major clinical challenge. Traditional prognostic tools often rely on either... Read moreIndustry
view channel
BD and Penn Institute Collaborate to Advance Immunotherapy through Flow Cytometry
BD (Becton, Dickinson and Company, Franklin Lakes, NJ, USA) has entered into a strategic collaboration with the Institute for Immunology and Immune Health (I3H, Philadelphia, PA, USA) at the University... Read more







