LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Molecular Method Assesses Genetic Risk for Celiac Disease

By LabMedica International staff writers
Posted on 20 Mar 2011
Molecular technology and electrophoretic methods are useful in assessing the genetic risk of developing Celiac Disease (CD).

The combination of polymerase chain reaction (PCR) technology and capillary electrophoresis enables the specific genotyping that is associated with those who are gluten intolerant.

Scientists at Malmö University, (Malmö, Sweden), have developed a semiautomated sequence specific primer (SSP) PCR method for clinical human leukocyte antigen (HLA) typing and compared the test results with those from a commercial method. Primers for each DQA1 and DQB1 allele group were included in the PCR-SSP reaction to allow differentiation of homozygous from heterozygous carriers of risk alleles. Primers detecting the tightly linked DRB1 alleles were included to resolve potentially ambiguous results.

Fluorescently labeled PCR products of 119 clinical samples were analyzed by capillary electrophoresis, and results were compared to those previously obtained from the DELFIA Type 1 Diabetes Genetic Predisposition assay (PerkinElmer; Waltham
MA, USA
). The risk assessment derived from the two methods was 100% concordant. One previously unreported haplotype was detected and haplotype assignments in two of the 119 samples were improved from previous reports.

The authors concluded the use of three PCR reactions and a single electrophoretic step is a high-throughput HLA typing method that accurately distinguishes risk alleles for CD while providing equal or better resolution than many available commercial kits. This method is therefore well suited for clinical use to negate the possibility of CD. Although the presence of a known risk allele lacks specificity for CD, the absence of all known risk alleles has a high negative predictive value, thus obviating the need for additional diagnostic testing. The study was published online on January 8, 2011, in Clinica Chimica Acta.

Related Links:

Malmö University
PerkinElmer



Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Gold Member
Radial Immunodiffusion Assay
Radial Immunodifusion - C3 ID

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more