We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Molecular Method Assesses Genetic Risk for Celiac Disease

By LabMedica International staff writers
Posted on 20 Mar 2011
Print article
Molecular technology and electrophoretic methods are useful in assessing the genetic risk of developing Celiac Disease (CD).

The combination of polymerase chain reaction (PCR) technology and capillary electrophoresis enables the specific genotyping that is associated with those who are gluten intolerant.

Scientists at Malmö University, (Malmö, Sweden), have developed a semiautomated sequence specific primer (SSP) PCR method for clinical human leukocyte antigen (HLA) typing and compared the test results with those from a commercial method. Primers for each DQA1 and DQB1 allele group were included in the PCR-SSP reaction to allow differentiation of homozygous from heterozygous carriers of risk alleles. Primers detecting the tightly linked DRB1 alleles were included to resolve potentially ambiguous results.

Fluorescently labeled PCR products of 119 clinical samples were analyzed by capillary electrophoresis, and results were compared to those previously obtained from the DELFIA Type 1 Diabetes Genetic Predisposition assay (PerkinElmer; Waltham
MA, USA
). The risk assessment derived from the two methods was 100% concordant. One previously unreported haplotype was detected and haplotype assignments in two of the 119 samples were improved from previous reports.

The authors concluded the use of three PCR reactions and a single electrophoretic step is a high-throughput HLA typing method that accurately distinguishes risk alleles for CD while providing equal or better resolution than many available commercial kits. This method is therefore well suited for clinical use to negate the possibility of CD. Although the presence of a known risk allele lacks specificity for CD, the absence of all known risk alleles has a high negative predictive value, thus obviating the need for additional diagnostic testing. The study was published online on January 8, 2011, in Clinica Chimica Acta.

Related Links:

Malmö University
PerkinElmer



New
Gold Member
Rotavirus Test
Rotavirus Test - 30003 – 30073
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Respiratory QC Panel
Assayed Respiratory Control Panel
New
Binocular Laboratory LED Illuminated Microscope
HumaScope Classic LED

Print article

Channels

Molecular Diagnostics

view channel
Image: The study investigated D-dimer testing in patients who are at higher risk of pulmonary embolism (Photo courtesy of Adobe Stock)

D-Dimer Testing Can Identify Patients at Higher Risk of Pulmonary Embolism

Pulmonary embolism (PE) is a commonly suspected condition in emergency departments (EDs) and can be life-threatening if not diagnosed correctly. Achieving an accurate diagnosis is vital for providing effective... Read more

Immunology

view channel
Image: The findings were based on patients from the ADAURA clinical trial of the targeted therapy osimertinib for patients with NSCLC with EGFR-activated mutations (Photo courtesy of YSM Multimedia Team)

Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions

In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read more

Microbiology

view channel
Image: Schematic representation illustrating the key findings of the study (Photo courtesy of UNIST)

Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours

Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read more
Sekisui Diagnostics UK Ltd.