Noninvasive Device Computes Blood Glucose Levels
By LabMedica International staff writers Posted on 13 Sep 2010 |
Raman spectroscopy has been used to measure the amount of glucose in the tissue under the skin without the need to perform phlebotomy.
Raman spectroscopy is a technique used to study vibrational, rotational, and other low-frequency modes in a system. It relies on inelastic scattering of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range.
Patients undergoing the oral glucose tolerance test (OGTT) need to have their blood drawn at frequent intervals so that after ingestion of a glucose-rich solution, the level of glucose in the blood can be estimated. This test will determine how quickly glucose is cleared from the blood, an indicator of diabetes, insulin resistance, or reactive hypoglycemia. In a study of 10 healthy volunteers undergoing OGTT, at the Massachusetts Institute of Technology's (MIT) Spectroscopy Laboratory (Cambridge, MA, USA), blood concentrations of glucose were measured every 10 minutes using a clinical glucose analyzer (HemoCue, Inc., Lake Forest, CA, USA).
Raman spectra were collected every five minutes from the forearms of healthy Caucasian and Asian human volunteers undergoing the OGTT. For the excitation source, an 830 nm diode laser was used at an average power of 300 mW on a 1 mm2 skin spot. An f/1.8 spectrograph was coupled to a liquid nitrogen-cooled charge-coupled device for spectral dispersion and acquisition, respectively. A dynamic concentration correction (DCC) calibration method was applied to the Raman spectra results for correlation with the blood glucose results.
The Raman technique actually measures the glucose concentration in the interstitial fluid and not the blood. However, this calibration becomes more difficult immediately after the patient drinks the glucose solution because blood glucose soars rapidly, while it takes 5-10 minutes to see a corresponding surge in the interstitial fluid glucose levels. Therefore, interstitial fluid measurements do not give an accurate picture of what is happening in the bloodstream. To compare the two sets of results, the scientists used an algorithm that relates the two concentrations, allowing them to predict blood glucose levels from the glucose concentration in interstitial fluid. After the algorithm was applied, the results from the two sets of data were very similar.
The scientists reported that using DCC-calibrated Raman spectroscopy significantly boost the accuracy of blood glucose measurements with an average improvement of 15%, and up to 30% in some subjects. The study was published in the June 2010 issue of Analytical Chemistry.
Related Links:
Massachusetts Institute of Technology
HemoCue, Inc.
Raman spectroscopy is a technique used to study vibrational, rotational, and other low-frequency modes in a system. It relies on inelastic scattering of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range.
Patients undergoing the oral glucose tolerance test (OGTT) need to have their blood drawn at frequent intervals so that after ingestion of a glucose-rich solution, the level of glucose in the blood can be estimated. This test will determine how quickly glucose is cleared from the blood, an indicator of diabetes, insulin resistance, or reactive hypoglycemia. In a study of 10 healthy volunteers undergoing OGTT, at the Massachusetts Institute of Technology's (MIT) Spectroscopy Laboratory (Cambridge, MA, USA), blood concentrations of glucose were measured every 10 minutes using a clinical glucose analyzer (HemoCue, Inc., Lake Forest, CA, USA).
Raman spectra were collected every five minutes from the forearms of healthy Caucasian and Asian human volunteers undergoing the OGTT. For the excitation source, an 830 nm diode laser was used at an average power of 300 mW on a 1 mm2 skin spot. An f/1.8 spectrograph was coupled to a liquid nitrogen-cooled charge-coupled device for spectral dispersion and acquisition, respectively. A dynamic concentration correction (DCC) calibration method was applied to the Raman spectra results for correlation with the blood glucose results.
The Raman technique actually measures the glucose concentration in the interstitial fluid and not the blood. However, this calibration becomes more difficult immediately after the patient drinks the glucose solution because blood glucose soars rapidly, while it takes 5-10 minutes to see a corresponding surge in the interstitial fluid glucose levels. Therefore, interstitial fluid measurements do not give an accurate picture of what is happening in the bloodstream. To compare the two sets of results, the scientists used an algorithm that relates the two concentrations, allowing them to predict blood glucose levels from the glucose concentration in interstitial fluid. After the algorithm was applied, the results from the two sets of data were very similar.
The scientists reported that using DCC-calibrated Raman spectroscopy significantly boost the accuracy of blood glucose measurements with an average improvement of 15%, and up to 30% in some subjects. The study was published in the June 2010 issue of Analytical Chemistry.
Related Links:
Massachusetts Institute of Technology
HemoCue, Inc.
Latest Clinical Chem. News
- Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
- Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
- AI-Powered Raman Spectroscopy Method Enables Rapid Drug Detection in Blood
- Novel LC-MS/MS Assay Detects Low Creatinine in Sweat and Saliva
- Biosensing Technology Breakthrough Paves Way for New Methods of Early Disease Detection
- New Saliva Test Rapidly Identifies Paracetamol Overdose
- POC Saliva Testing Device Predicts Heart Failure in 15 Minutes
- Screening Tool Detects Multiple Health Conditions from Single Blood Drop
- Integrated Chemistry and Immunoassay Analyzer with Extensive Assay Menu Offers Flexibility, Scalability and Data Commutability
- Rapid Drug Test to Improve Treatment for Patients Presenting to Hospital
- AI Model Detects Cancer at Lightning Speed through Sugar Analyses
- First-Ever Blood-Powered Chip Offers Real-Time Health Monitoring
- New ADLM Guidance Provides Expert Recommendations on Clinical Testing For Respiratory Viral Infections
- 3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models
- POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection
- Highly Reliable Cell-Based Assay Enables Accurate Diagnosis of Endocrine Diseases
Channels
Molecular Diagnostics
view channel
Blood Test Identifies Multiple Biomarkers for Rapid Diagnosis of Spinal Cord Injury
The National Institutes of Health estimates that 18,000 individuals in the United States sustain spinal cord injuries (SCIs) annually, resulting in a staggering financial burden of over USD 9.... Read more
Highly Accurate Blood Test Diagnoses Alzheimer’s and Measures Dementia Progression
Several blood tests are currently available to assist doctors in diagnosing Alzheimer's disease in individuals experiencing cognitive symptoms. However, these tests do not provide insights into the clinical... Read more
Simple DNA PCR-Based Lab Test to Enable Personalized Treatment of Bacterial Vaginosis
Approximately one in three women aged 14-49 in the United States will experience bacterial vaginosis (BV), a vaginal bacterial imbalance, at some point in their lives. Around 50% of BV cases do not present... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
AI Model Predicts Patient Response to Bladder Cancer Treatment
Each year in the United States, around 81,000 new cases of bladder cancer are diagnosed, leading to approximately 17,000 deaths annually. Muscle-invasive bladder cancer (MIBC) is a severe form of bladder... Read more
New Laser-Based Method to Accelerate Cancer Diagnosis
Researchers have developed a method to improve cancer diagnostics and other diseases. Collagen, a key structural protein, plays various roles in cell activity. A novel multidisciplinary study published... Read more
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Leica Biosystems and Bio-Techne Expand Spatial Multiomic Collaboration
Bio-Techne Corporation (Minneapolis, MN, USA) has expanded the longstanding partnership between its spatial biology brand, Advanced Cell Diagnostics (ACD, Newark, CA, USA), and Leica Biosystems (Nussloch,... Read more
Philips and Ibex Expand Partnership to Enhance AI-Enabled Pathology Workflows
Royal Philips (Amsterdam, The Netherlands) has expanded its partnership with Ibex Medical Analytics (Tel Aviv, Israel) and released the new Philips IntelliSite Pathology Solution (PIPS) to further accelerate... Read more
Grifols and Inpeco Partner to Deliver Transfusion Medicine ‘Lab of The Future’
Grifols (Barcelona, Spain), a manufacturer of plasma-derived medicines and innovative diagnostic solutions, has entered into a strategic agreement with Inpeco (Novazzano, Switzerland), a global leader... Read more