We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo ADLM 2025 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Therapy Technique Cures Cystic Fibrosis in Culture Model

By LabMedica International staff writers
Posted on 31 Jul 2009
A gene therapy technique based on a parainfluenza virus vector was used to successfully cure an in vitro model of cystic fibrosis.

Cystic fibrosis (CF) lung disease results from reduced airway surface hydration leading to decreased mucus clearance that precipitates bacterial infection and progressive obstructive lung disease. CF is a genetic disease, and the mutant protein is a chloride ion channel (CFTR) that normally regulates ion and fluid transport on the airway surface.

Investigators at the University of North Carolina (Chapel Hill, USA) reasoned that the most appropriate means for delivering a gene to lung tissue was a virus that specialized in invading the lungs. They created an in vitro model of CF by growing cultures of ciliated surface airway epithelium (CF HAE) cells obtained from a CF patient. The cultures were then treated with parainfluenza virus that had been genetically engineered to carry the normal CFTR gene.

Results published in the July 21, 2009, online edition of the journal PLoS Biology revealed that the vector delivered CFTR to more than 60% of airway surface epithelial cells, and the expression of CFTR protein in the CF HAE cells was approximately 100-fold higher than endogenous levels found in normal HAE cells.

By titering the amount of CFTR gene in the vector, the investigators were able to determine that uptake of the gene by 25% of the cells was sufficient to restore normal function to the entire culture.

"We discovered that if you take a virus that has evolved to infect the human airways, and you engineer a normal CFTR gene into it, you can use this virus to correct all of the hallmark CF features in the model system that we used,” said senior author Dr. Raymond J. Pickles, associate professor of microbiology and immunology at the University of North Carolina. "This is the first demonstration in which we have been able to execute delivery in an efficient manner. When you consider that in past gene therapy studies, the targeting efficiency has been somewhere around 0.1% of cells, you can see this is a giant leap forward.”

"We have not generated a vector that we can go out and give to patients now,” said Dr. Pickles, "but these studies continue to convince us that a gene replacement therapy for CF patients will some day be available in the future.”

Related Links:
University of North Carolina


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
New
Clostridium Difficile Toxin A+B Combo Card Test
CerTest Clostridium Difficile Toxin A+B

DIASOURCE (A Biovendor Company)

Channels

Molecular Diagnostics

view channel
Image: New research brings hope for improved early detection of pancreatic cancer (Photo courtesy of Adobe Stock)

New Biomarker Panel to Enable Early Detection of Pancreatic Cancer

Pancreatic cancer (PC) has one of the worst prognoses globally, with only 13% of diagnosed patients surviving for five years or more. In Ireland, there are about 900 cases of pancreatic cancer annually,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: An “evolutionary” approach to treating metastatic breast cancer could allow therapy choices to be adapted as patients’ cancer changes (Photo courtesy of 123RF)

Evolutionary Clinical Trial to Identify Novel Biomarker-Driven Therapies for Metastatic Breast Cancer

Metastatic breast cancer, which occurs when cancer spreads from the breast to other parts of the body, is one of the most difficult cancers to treat. Nearly 90% of patients with metastatic cancer will... Read more

Pathology

view channel
Image: A real-time trial has shown that AI could speed cancer care (Photo courtesy of Campanella, et al., Nature Medicine)

AI Accurately Predicts Genetic Mutations from Routine Pathology Slides for Faster Cancer Care

Current cancer treatment decisions are often guided by genetic testing, which can be expensive, time-consuming, and not always available at leading hospitals. For patients with lung adenocarcinoma, a critical... Read more

Technology

view channel
Image: Researchers Dr. Lee Eun Sook and Dr. Lee Jinhyung examine the imprinting equipment used for nanodisk synthesis (Photo courtesy of KRISS)

Multifunctional Nanomaterial Simultaneously Performs Cancer Diagnosis, Treatment, and Immune Activation

Cancer treatments, including surgery, radiation therapy, and chemotherapy, have significant limitations. These treatments not only target cancerous areas but also damage healthy tissues, causing side effects... Read more
PURITAN MEDICAL