We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo WHX Labs Dubai 2026 Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Gene Therapy Technique Cures Cystic Fibrosis in Culture Model

By LabMedica International staff writers
Posted on 31 Jul 2009
A gene therapy technique based on a parainfluenza virus vector was used to successfully cure an in vitro model of cystic fibrosis.

Cystic fibrosis (CF) lung disease results from reduced airway surface hydration leading to decreased mucus clearance that precipitates bacterial infection and progressive obstructive lung disease. CF is a genetic disease, and the mutant protein is a chloride ion channel (CFTR) that normally regulates ion and fluid transport on the airway surface.

Investigators at the University of North Carolina (Chapel Hill, USA) reasoned that the most appropriate means for delivering a gene to lung tissue was a virus that specialized in invading the lungs. They created an in vitro model of CF by growing cultures of ciliated surface airway epithelium (CF HAE) cells obtained from a CF patient. The cultures were then treated with parainfluenza virus that had been genetically engineered to carry the normal CFTR gene.

Results published in the July 21, 2009, online edition of the journal PLoS Biology revealed that the vector delivered CFTR to more than 60% of airway surface epithelial cells, and the expression of CFTR protein in the CF HAE cells was approximately 100-fold higher than endogenous levels found in normal HAE cells.

By titering the amount of CFTR gene in the vector, the investigators were able to determine that uptake of the gene by 25% of the cells was sufficient to restore normal function to the entire culture.

"We discovered that if you take a virus that has evolved to infect the human airways, and you engineer a normal CFTR gene into it, you can use this virus to correct all of the hallmark CF features in the model system that we used,” said senior author Dr. Raymond J. Pickles, associate professor of microbiology and immunology at the University of North Carolina. "This is the first demonstration in which we have been able to execute delivery in an efficient manner. When you consider that in past gene therapy studies, the targeting efficiency has been somewhere around 0.1% of cells, you can see this is a giant leap forward.”

"We have not generated a vector that we can go out and give to patients now,” said Dr. Pickles, "but these studies continue to convince us that a gene replacement therapy for CF patients will some day be available in the future.”

Related Links:
University of North Carolina


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
Gel Cards
DG Gel Cards

Channels

Molecular Diagnostics

view channel
Image: The LIAISON NES Group A Strep assay is intended for use on the LIAISON NES POC molecular diagnostics system (Photo courtesy of Diasorin)

Group A Strep Molecular Test Delivers Definitive Results at POC in 15 Minutes

Strep throat is a bacterial infection caused by Group A Streptococcus (GAS). It is a leading bacterial cause of acute pharyngitis, particularly in children and adolescents, and one of the most common reasons... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Pathology

view channel
Image: Sophie Paczesny, M.D., Ph.D and her team have made BIOPREVENT freely available for researchers and clinician to test and learn from (Photo courtesy of Cliff Rhodes)

AI Tool Uses Blood Biomarkers to Predict Transplant Complications Before Symptoms Appear

Stem cell and bone marrow transplants can be lifesaving, but serious complications may arise months after patients leave the hospital. One of the most dangerous is chronic graft-versus-host disease, in... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image

QuidelOrtho Collaborates with Lifotronic to Expand Global Immunoassay Portfolio

QuidelOrtho (San Diego, CA, USA) has entered a long-term strategic supply agreement with Lifotronic Technology (Shenzhen, China) to expand its global immunoassay portfolio and accelerate customer access... Read more