We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Blood-Based Biomarker Test Could Identify Patients at High Risk of Severe COVID-19

By LabMedica International staff writers
Posted on 08 Dec 2021
Print article
Image: Blood-Based biomarker test could identify patients at high risk of severe COVID-19 (Photo courtesy of WEHI)
Image: Blood-Based biomarker test could identify patients at high risk of severe COVID-19 (Photo courtesy of WEHI)

Researchers have discovered a biomarker that could assist in the early identification of people at high risk of developing severe COVID-19.

Led by computational researchers from The Walter and Eliza Hall Institute of Medical Research (WEHI; Parkville, Australia), the study used advanced spatial transcriptomic techniques to screen for genes associated with excessive inflammation in the lungs, a key indicator of severe COVID-19.

The research team collected samples from 30 patients across three groups: 10 patients with COVID-19, 10 with H1N1 influenza and 10 uninfected. The research team was able to generate a gene transcriptional landscape showing how different parts of the lung are impacted in each scenario. The IFI27 gene, known to be activated by the immune system in response to viruses, was found to predict disease progression and is strongly associated with disease severity. The discovery would pave the way for a diagnostic test to be developed, so patients who were at high-risk of severe COVID-19 could be triaged and treated early.

The findings have the potential to revolutionize the way patients are treated and alleviate pressure on the healthcare system. The researchers are now participating in an international effort to translate this research into a diagnostic test to identify patients at high-risk of severe COVID-19 during the early stages of their infection, to better target health-care intervention and prevent ICU admissions associated with severe disease.

“Only a limited number of biomarkers were found to be significantly upregulated in the lungs of COVID-19 patients, compared to patients with influenza. The presence of the IFI27 gene was a reliable prediction of severe lung inflammation,” said Dr. Chin Wee Tan. “Our multi-cohort follow up study, has shown that expression of the IFI27 biomarker in COVID-19 patients can predict disease progression and is strongly associated with disease severity."

“When a patient presents to a clinic, we could assess how severe their symptoms will become by measuring the IF127 levels in the blood - regardless of the symptoms they’re presenting,” added Associate Professor Melissa Davis.

Related Links:
WEHI 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
SARS‑CoV‑2/Flu A/Flu B/RSV Sample-To-Answer Test
SARS‑CoV‑2/Flu A/Flu B/RSV Cartridge (CE-IVD)

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Ultrasound-based duplex sonography combined with a new genetic testing procedure can identify clonal haematopoiesis (Photo courtesy of 123RF)

New Genetic Testing Procedure Combined With Ultrasound Detects High Cardiovascular Risk

A key interest area in cardiovascular research today is the impact of clonal hematopoiesis on cardiovascular diseases. Clonal hematopoiesis results from mutations in hematopoietic stem cells and may lead... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more