Breakthrough Technology Represents Leap Forward in Next-Generation Sequencing
By LabMedica International staff writers Posted on 21 Feb 2025 |

Next-generation sequencing (NGS) has revolutionized our understanding of genetics, genomics, and cell biology, offering detailed insights that are essential for decoding complex diseases such as cancer, immune disorders, and neurodegenerative conditions, where the progression of the disease is influenced by hundreds or even thousands of genes. Now, a groundbreaking advancement in NGS technology is poised to take this understanding even further.
Roche (Basel, Switzerland) has introduced its proprietary sequencing by expansion (SBX) technology, marking a new era in NGS. SBX combines advanced chemistry with an innovative sensor module to deliver ultra-rapid, high-throughput sequencing that is both flexible and scalable, catering to a wide range of applications. This novel sequencing technique employs a sophisticated biochemical process to encode the sequence of a target nucleic acid molecule (either DNA or RNA) into a surrogate polymer known as an Xpandomer. These Xpandomers are significantly longer than the original molecule—fifty times longer—and encode the sequence information into high signal-to-noise reporters, providing clear signals with minimal background interference. This results in highly accurate single-molecule nanopore sequencing, utilizing a CMOS-based sensor module with parallel processing capabilities, offering unprecedented speed and flexibility compared to traditional sequencing technologies. Roche’s innovative NGS platform is designed to overcome the limitations of conventional methods, offering a combination of high accuracy, flexibility, and speed that makes it suitable for a broad array of genomic applications.
A major advantage of the SBX technology is its scalability. The chemistry integrates with an advanced CMOS sensor module that allows for ultra-rapid, real-time base calling and analysis. This system can process multiple samples simultaneously, creating a flexible, high-throughput architecture that enables cost-efficient sequencing for various project sizes, from small studies to large-scale projects involving thousands of samples. This scalability and versatility make SBX technology ideal for applications such as whole genome sequencing, whole exome sequencing, and RNA sequencing. Its potential extends beyond research labs, with promising applications in clinical settings where detailed genomic insights are crucial. SBX technology offers researchers the ability to meet evolving research demands efficiently, driving significant progress in our understanding of genetics and disease. This, in turn, holds the potential to improve healthcare outcomes and drive the adoption of more advanced sequencing technologies in clinical labs, further advancing the field of genomics.
“The science behind SBX technology represents a significant breakthrough that addresses the limitations of existing sequencing solutions,” states Matt Sause, CEO of Roche Diagnostics. “By integrating and enhancing the two technologies, Roche's SBX has created a differentiated approach, offering unparalleled speed, efficiency and flexibility. The speed and accuracy of SBX has the potential to revolutionize the use of sequencing in research and healthcare.”
Latest Pathology News
- New AI Model Predicts Gene Variants’ Effects on Specific Diseases
- Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
- Pre-Analytical Conditions Influence Cell-Free MicroRNA Stability in Blood Plasma Samples
- 3D Cell Culture System Could Revolutionize Cancer Diagnostics
- Painless Technique Measures Glucose Concentrations in Solution and Tissue Via Sound Waves
- Skin-Based Test to Improve Diagnosis of Rare, Debilitating Neurodegenerative Disease
- Serum Uromodulin Could Indicate Acute Kidney Injury in COVID-19 Patients
- AI Model Reveals True Biological Age From Five Drops of Blood
- First-Of-Its-Kind AI Tool Visualizes Cell’s ‘Social Network’ To Treat Cancer
- New Test Diagnoses High-Risk Childhood Brain Tumors
- Informatics Solution Elevates Laboratory Efficiency and Patient Care
- Microfluidic Device Assesses Stickiness of Tumor Cells to Predict Cancer Spread
- New AI Tool Outperforms Previous Methods for Identifying Colorectal Cancer from Tissue Sample Analysis
- New Technique Predicts Aggressive Tumors Before They Metastasize
- Butterfly Wings-Inspired Imaging Technique Enables Faster Cancer Diagnosis
- Machine Learning Tool Enables AI-Assisted Diagnosis of Immunological Diseases
Channels
Clinical Chemistry
view channel
Carbon Nanotubes Help Build Highly Accurate Sensors for Continuous Health Monitoring
Current sensors can measure various health indicators, such as blood glucose levels, in the body. However, there is a need to develop more accurate and sensitive sensor materials that can detect lower... Read more
Paper-Based Device Boosts HIV Test Accuracy from Dried Blood Samples
In regions where access to clinics for routine blood tests presents financial and logistical obstacles, HIV patients are increasingly able to collect and send a drop of blood using paper-based devices... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreImmunology
view channel
Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
In the ongoing advancement of personalized medicine, a new study has provided evidence supporting the use of a tool that detects cancer-derived molecules in the blood of lung cancer patients years after... Read moreCerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
In recent years, cancer immunotherapy has emerged as a promising approach where the patient's immune system is harnessed to fight cancer. One form of immunotherapy, called CAR-T-cell therapy, involves... Read more
New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
Preterm infants are particularly vulnerable due to their organs still undergoing development, which can lead to difficulties in breathing, eating, and regulating body temperature. This is especially true... Read more
Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
Endometrial cancer, which develops in the lining of the uterus, is the most prevalent gynecologic cancer in the United States, affecting over 66,000 women annually. Projections indicate that in 2025, around... Read moreMicrobiology
view channel
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read moreInnovative ID/AST System to Help Diagnose Infectious Diseases and Combat AMR
Each year, 11 million people across the world die of sepsis out of which 1.3 million deaths are due to antibiotic-resistant bacteria. The burden of antimicrobial resistance (AMR) continues to weigh heavily,... Read more
Gastrointestinal Panel Delivers Rapid Detection of Five Common Bacterial Pathogens for Outpatient Use
Acute infectious gastroenteritis results in approximately 179 million cases each year in the United States, leading to a significant number of outpatient visits and hospitalizations. To address this, a... Read morePathology
view channel
New AI Model Predicts Gene Variants’ Effects on Specific Diseases
In recent years, artificial intelligence (AI) has greatly enhanced our ability to identify a vast number of genetic variants in increasingly larger populations. However, up to half of these variants are... Read more
Powerful AI Tool Diagnoses Coeliac Disease from Biopsy Images with Over 97% Accuracy
Coeliac disease is an autoimmune disorder triggered by the consumption of gluten, causing symptoms such as stomach cramps, diarrhea, skin rashes, weight loss, fatigue, and anemia. Due to the wide variation... Read moreTechnology
view channel
Smartphones Could Diagnose Diseases Using Infrared Scans
Rapid advancements in technology may soon make it possible for individuals to bypass invasive medical procedures by simply uploading a screenshot of their lab results from their phone directly to their doctor.... Read more
Novel Sensor Technology to Enable Early Diagnoses of Metabolic and Cardiovascular Disorders
Metabolites are critical compounds that fuel life's essential functions, playing a key role in producing energy, regulating cellular activities, and maintaining the balance of bodily systems.... Read more
3D Printing Breakthrough Enables Large Scale Development of Tiny Microfluidic Devices
Microfluidic devices are diagnostic systems capable of analyzing small volumes of materials with precision and speed. These devices are used in a variety of applications, including cancer cell analysis,... Read moreIndustry
view channel
Philips and Ibex Expand Partnership to Enhance AI-Enabled Pathology Workflows
Royal Philips (Amsterdam, The Netherlands) has expanded its partnership with Ibex Medical Analytics (Tel Aviv, Israel) and released the new Philips IntelliSite Pathology Solution (PIPS) to further accelerate... Read more
Grifols and Inpeco Partner to Deliver Transfusion Medicine ‘Lab of The Future’
Grifols (Barcelona, Spain), a manufacturer of plasma-derived medicines and innovative diagnostic solutions, has entered into a strategic agreement with Inpeco (Novazzano, Switzerland), a global leader... Read more