We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

AI Tool Detects Tiny Protein Clumps in Microscopy Images in Real-Time

By LabMedica International staff writers
Posted on 23 May 2024
Print article
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)
Image: Insulin proteins clumping together (Photo courtesy of Jacob Kæstel-Hansen)

Over 55 million individuals worldwide suffer from dementia-related diseases like Alzheimer's and Parkinson's. These conditions are caused by the clumping together of the smallest building blocks in the body that disrupts vital functions. Within our cells, numerous interactions and exchanges among proteins and other molecules occur naturally, allowing our bodies to function properly. However, errors in these processes can lead to protein clumps that impair functionality, underpinning a variety of neurodegenerative disorders affecting the brain, including Alzheimer's and dementia. Understanding why this clumping occurs and how to treat it has remained elusive, largely due to a lack of adequate tools to study these phenomena. Researchers have now introduced a groundbreaking tool that can find these tiny protein clumps in microscopy images and lead to improved understanding and treatments of diseases like cancer, Alzheimer's, and Parkinson's.

Scientists at the University of Copenhagen (Copenhagen, Denmark) have developed a machine learning algorithm capable of observing protein clumping in real time under a microscope. This algorithm is capable of automatically identifying and monitoring the critical characteristics of the clumped-up building blocks responsible for Alzheimer's and other neurodegenerative diseases—a task previously unachievable. It can detect protein clumps as small as a billionth of a meter in microscopy images and categorize these clumps by their shape and size while tracking their development. The physical appearance of these clumps significantly influences their function and behavior within the body, whether detrimental or beneficial.

Going forward, this algorithm will simplify the process of discovering why clumps form, thereby aiding the development of new medications and therapies to fight these debilitating disorders. The researchers are actively using this tool in experiments with insulin molecules, which, when clumped, lose their ability to regulate blood sugar effectively. The tool allows for the observation of how these clumps change when exposed to various compounds, paving the way to potentially halt or alter them into less harmful or more stable forms. The team is optimistic about the tool's potential to facilitate drug development once these tiny building blocks are precisely identified. They anticipate that their efforts will initiate the gathering of more comprehensive knowledge regarding the shapes and functions of proteins and molecules. The algorithm is accessible as open-source software on the internet for use by scientific researchers and others interested in exploring the clumping of proteins and other molecules.

"In just minutes, our algorithm solves a challenge that would take researchers several weeks. That it will now be easier to study microscopic images of clumping proteins will hopefully contribute to our knowledge, and in the long term, lead to new therapies for neurodegenerative brain disorders," said PhD Jacob Kæstel-Hansen, who led the research team behind the algorithm.

Related Links:
University of Copenhagen

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Verification Panels for Assay Development & QC
Seroconversion Panels
New
H.pylori Test
Humasis H.pylori Card
New
Immunofluorescence Analyzer
MPQuanti

Print article

Channels

Molecular Diagnostics

view channel
Image: The Mirvie RNA platform predicts pregnancy complications months before they occur using a simple blood test (Photo courtesy of Mirvie)

RNA-Based Blood Test Detects Preeclampsia Risk Months Before Symptoms

Preeclampsia remains a major cause of maternal morbidity and mortality, as well as preterm births. Despite current guidelines that aim to identify pregnant women at increased risk of preeclampsia using... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Deliver Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: Schematic illustration of the chip (Photo courtesy of Biosensors and Bioelectronics, DOI: https://doi.org/10.1016/j.bios.2025.117401)

Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples

Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.