Cell Sorter Chip Technology to Pave Way for Immune Profiling at POC
|
By LabMedica International staff writers Posted on 06 Feb 2024 |

Monitoring the response of the immune system of cancer patients during disease and treatment is important for achieving favorable outcomes. To do this, labs utilize flow cytometry to perform immune profiling, which involves identifying and quantifying a patient's immune cells at a specific time. This information is vital for determining the most effective treatment for a cancer patient. Continuing this profiling during treatment helps clinicians understand how well the treatment is working. Despite the promise of immune profiling in guiding therapy being a burgeoning area in cancer research and treatment, it hasn’t been widely adopted in clinical practice due to the high cost, large size, and complexity of flow cytometry equipment. These machines are confined to specialized labs, and transporting blood samples to these facilities is time-consuming and requires special conditions to keep the cells viable, making routine monitoring of cancer patients challenging. Now, a novel cell sorter chip technology could bring immune monitoring to clinical practice for creating a truly personalized cancer treatment plan.
Researchers at IMEC (Leuven, Belgium) have developed a cytometry and cell sorter technology that channels a sample with fluorescently labeled cells through microfluidic channels on a chip. The cells are guided towards an excitation laser, a detection unit, and a sorting junction, where target cells are directed into a side channel using vapor bubbles created by microheaters in a water-filled microchamber. The target cells can then be collected and quantified at the end of this fluidic side channel. This technology could allow oncologists to use a portable tool, about the size of a lunchbox, in their office or daycare center to periodically check a patient’s immune system.
The process would involve taking a drop of blood and inserting the chip cartridge into an analyzing desktop tool, with results available within minutes. The chip, produced using standard chip technology on 200mm silicon wafers, can be mass-produced at an affordable cost, making it disposable if necessary to avoid cross-sample contamination. Additionally, the fabrication process allows for multiple microfluidic channels per chip, enabling high throughput without sacrificing sensitivity. This could mean a complete immune signature in as little as 10 minutes. By comparing these immune signatures to larger datasets, oncologists can quickly determine if a therapeutic effect is achieved.
In the first clinical validation of the cell sorter chip technology, IMEC researchers along with their colleagues at KU Leuven (Leuven, Belgium) set out to investigate whether it could identify and quantify immune cells as effectively as flow cytometry equipment. They chose to study CD8+PD-1+ T-cells, a type of cell that displays both CD8 and PD-1 proteins on its surface. CD8 signifies the cells as cytotoxic T-cells, essential for recognizing and destroying targets like cancer cells. PD-1 is a protein that regulates T-cell activity, maintaining immune balance after an invader is attacked. However, cancer cells can manipulate this pathway by overexpressing PD-1 ligands, suppressing the immune response, and allowing unchecked growth. Analyzing PD-1 positive T-cells in a cancer patient's blood can indicate whether the cancer employs this immune evasion strategy.
In such cases, immune checkpoint inhibitor drugs can be used to prevent PD-1 proteins on T-cells from binding with tumor-produced PD-1 ligands, restoring the T-cells’ ability to attack the cancer cells. The chip accurately identified PD-1 positive T-cells in blood samples from 15 ovarian cancer patients, matching the accuracy of conventional, expensive flow cytometry equipment like FACS. This achievement marks a significant step towards developing a point-of-care tool for immune profiling, a groundbreaking advancement in cancer therapy that aims to customize treatment plans for each patient.
“With cancer, you don’t want to lose precious time by giving the patient an expensive therapy that doesn’t work. This is certainly true for ovarian cancer. This kind of cancer is mostly detected at a very late stage because the tumor has a lot of ‘free’ space to grow in the abdominal cavity before the patient will experience this as pain,” said An Coosemans, MD Ph.D., professor at KU Leuven and heading the Laboratory on Tumor Immunology and Immunotherapy. “Imec’s cell sorter technology has the potential to provide oncologists with a tool to do initial and repeated immune profiling to choose the most effective treatment.”
Latest Immunology News
- Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug
- Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment
- Ultrasensitive Liquid Biopsy Demonstrates Efficacy in Predicting Immunotherapy Response
- Blood Test Could Identify Colon Cancer Patients to Benefit from NSAIDs
- Blood Test Could Detect Adverse Immunotherapy Effects
- Routine Blood Test Can Predict Who Benefits Most from CAR T-Cell Therapy
- New Test Distinguishes Vaccine-Induced False Positives from Active HIV Infection
- Gene Signature Test Predicts Response to Key Breast Cancer Treatment
- Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
- Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
- Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
- Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection
- Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer
- Luminescent Probe Measures Immune Cell Activity in Real Time
- Blood-Based Immune Cell Signatures Could Guide Treatment Decisions for Critically Ill Patients
- Novel Tool Predicts Most Effective Multiple Sclerosis Medication for Patients
Channels
Clinical Chemistry
view channel
New PSA-Based Prognostic Model Improves Prostate Cancer Risk Assessment
Prostate cancer is the second-leading cause of cancer death among American men, and about one in eight will be diagnosed in their lifetime. Screening relies on blood levels of prostate-specific antigen... Read more
Extracellular Vesicles Linked to Heart Failure Risk in CKD Patients
Chronic kidney disease (CKD) affects more than 1 in 7 Americans and is strongly associated with cardiovascular complications, which account for more than half of deaths among people with CKD.... Read moreMolecular Diagnostics
view channel
Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test
Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more
Blood Test Detects Early-Stage Cancers by Measuring Epigenetic Instability
Early-stage cancers are notoriously difficult to detect because molecular changes are subtle and often missed by existing screening tools. Many liquid biopsies rely on measuring absolute DNA methylation... Read more
“Lab-On-A-Disc” Device Paves Way for More Automated Liquid Biopsies
Extracellular vesicles (EVs) are tiny particles released by cells into the bloodstream that carry molecular information about a cell’s condition, including whether it is cancerous. However, EVs are highly... Read more
Blood Test Identifies Inflammatory Breast Cancer Patients at Increased Risk of Brain Metastasis
Brain metastasis is a frequent and devastating complication in patients with inflammatory breast cancer, an aggressive subtype with limited treatment options. Despite its high incidence, the biological... Read moreHematology
view channel
New Guidelines Aim to Improve AL Amyloidosis Diagnosis
Light chain (AL) amyloidosis is a rare, life-threatening bone marrow disorder in which abnormal amyloid proteins accumulate in organs. Approximately 3,260 people in the United States are diagnosed... Read more
Fast and Easy Test Could Revolutionize Blood Transfusions
Blood transfusions are a cornerstone of modern medicine, yet red blood cells can deteriorate quietly while sitting in cold storage for weeks. Although blood units have a fixed expiration date, cells from... Read more
Automated Hemostasis System Helps Labs of All Sizes Optimize Workflow
High-volume hemostasis sections must sustain rapid turnaround while managing reruns and reflex testing. Manual tube handling and preanalytical checks can strain staff time and increase opportunities for error.... Read more
High-Sensitivity Blood Test Improves Assessment of Clotting Risk in Heart Disease Patients
Blood clotting is essential for preventing bleeding, but even small imbalances can lead to serious conditions such as thrombosis or dangerous hemorrhage. In cardiovascular disease, clinicians often struggle... Read moreMicrobiology
view channel
Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease
Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read moreAI-Powered Platform Enables Rapid Detection of Drug-Resistant C. Auris Pathogens
Infections caused by the pathogenic yeast Candida auris pose a significant threat to hospitalized patients, particularly those with weakened immune systems or those who have invasive medical devices.... Read morePathology
view channel
Engineered Yeast Cells Enable Rapid Testing of Cancer Immunotherapy
Developing new cancer immunotherapies is a slow, costly, and high-risk process, particularly for CAR T cell treatments that must precisely recognize cancer-specific antigens. Small differences in tumor... Read more
First-Of-Its-Kind Test Identifies Autism Risk at Birth
Autism spectrum disorder is treatable, and extensive research shows that early intervention can significantly improve cognitive, social, and behavioral outcomes. Yet in the United States, the average age... Read moreTechnology
view channel
Robotic Technology Unveiled for Automated Diagnostic Blood Draws
Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more
ADLM Launches First-of-Its-Kind Data Science Program for Laboratory Medicine Professionals
Clinical laboratories generate billions of test results each year, creating a treasure trove of data with the potential to support more personalized testing, improve operational efficiency, and enhance patient care.... Read moreAptamer Biosensor Technology to Transform Virus Detection
Rapid and reliable virus detection is essential for controlling outbreaks, from seasonal influenza to global pandemics such as COVID-19. Conventional diagnostic methods, including cell culture, antigen... Read more
AI Models Could Predict Pre-Eclampsia and Anemia Earlier Using Routine Blood Tests
Pre-eclampsia and anemia are major contributors to maternal and child mortality worldwide, together accounting for more than half a million deaths each year and leaving millions with long-term health complications.... Read moreIndustry
view channelNew Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing
Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
AI-Powered Cervical Cancer Test Set for Major Rollout in Latin America
Noul Co., a Korean company specializing in AI-based blood and cancer diagnostics, announced it will supply its intelligence (AI)-based miLab CER cervical cancer diagnostic solution to Mexico under a multi‑year... Read more
Diasorin and Fisher Scientific Enter into US Distribution Agreement for Molecular POC Platform
Diasorin (Saluggia, Italy) has entered into an exclusive distribution agreement with Fisher Scientific, part of Thermo Fisher Scientific (Waltham, MA, USA), for the LIAISON NES molecular point-of-care... Read more







