LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Washing Techniques Compared for Preparation of Autologous Blood Transfusion

By LabMedica International staff writers
Posted on 11 Oct 2022
Image: The HemoClear microfiltration device for the preparation of autologous blood transfusion (Photo courtesy of Pennine Healthcare)
Image: The HemoClear microfiltration device for the preparation of autologous blood transfusion (Photo courtesy of Pennine Healthcare)

Cell salvage is the process by which blood lost in surgery is collected and washed or filtered to produce autologous blood for re-transfusion to the patient. Cell salvage aims to reduce the need for donor blood.

Centrifugal cell salvage washing technique is a preferred medical treatment in order to retain lost red blood cells (RBCs) without contaminants. Although this technology very efficiently collects and washes shed blood, it is costly and often impractical or unavailable, especially in middle- or low-income countries.

A team of clinical scientists working with the Sanquin Blood Bank (Amsterdam, the Netherlands) collected a total of nine whole blood units, 500 mL ± 10% in quadruple, and used bottom-and-top collection systems containing 70 mL of citrate-phosphate-dextrose (CPD, Fresenius Kabi, Emmer Compascuum, the Netherlands) at the Sanquin Blood Center to allow their temperatures to adjust to 20 to 24 ℃. The processing of the whole blood with the devices was initiated at around 16 hours after collection.

The laboratory study was designed to compare the centrifugation (autoLog, Medtronic, Eindhoven, the Netherlands), microfiltration (HemoClear BV, Zwolle, The Netherlands) and coarse filtration (Hemafuse, Sisu Global Health, Baltimore, MD, USA) techniques in their ability to remove non-cellular components and recover and concentrate the blood cells. Hematological parameters (cell count, hemoglobin concentration, hematocrit and mean corpuscular volume (MCV)) were obtained using an Advia 2120 hematology analyzer (Siemens Healthcare Nederland BV, Den Haag, the Netherlands).

The hematology team reported that the centrifugal technology confirmed its efficacy to remove potentially harmful solutes and capture red blood cells. The microfiltration technology (HemoClear) reached comparable levels of removal of solutes, with a potential advantage over centrifugal technology in the ability to also recover platelets. The coarse filtration technology (Hemafuse) had no washing capacity but, like the microfiltration technology, has the advantage of recovering platelets. Both filtration-based technologies recovered a significantly greater amount of platelets, with the coarse filtration having the highest recovery of platelets, 92% versus 67% with microfiltration. The mean-free hemoglobin concentration before processing was 11 ± 10 mg/L. The centrifugation procedure significantly increased mean-free hemoglobin concentration to 207 ± 22 mg/L.

The authors concluded that innovative filtration devices represent an alternative to centrifugal technology in the preparation of autologous blood for reinfusion. The HemoClear technology for the first time enables the recovery of washed platelets and red blood cells. Washing of blood cells with saline is necessary to remove non-cellular components and enable safe reinfusion. Both the centrifugation (autoLog) and microfiltration (HemoClear) technologies have a washing feature and effectively reduce the various non-cellular solutes. The study was published on September 30, 2022 in the Journal of Blood Medicine.

Related Links:
Sanquin Blood Bank
Fresenius Kabi
Medtronic
Sisu Global Health 
Siemens Healthcare Nederland BV 

Gold Member
Collection and Transport System
PurSafe Plus®
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Capillary Blood Collection Tube
IMPROMINI M3
Sample Transportation System
Tempus1800 Necto

Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more