LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Near-Infrared Set-Up Evaluated for Dried Blood Spot Hematocrit

By LabMedica International staff writers
Posted on 11 Nov 2021
Print article
Image: The NIRFlex N-500 Fourier Transformation spectrometer (Photo courtesy of Büchi Labortechnik)
Image: The NIRFlex N-500 Fourier Transformation spectrometer (Photo courtesy of Büchi Labortechnik)
Capillary dried blood sampling, where samples are obtained from a finger or heel prick, has many advantages over traditional blood sampling. The best-known dried blood sampling technique is the generation of dried blood spots (DBS) on filter paper.

Conventional DBS cards remain valuable to collect dried blood microsamples, not in the least because DBS sampling is well known in the newborn and pediatrics field, the analysis can easily be automated and the cost is low. Amongst the approaches that were developed to cope with this issue, is the hematocrit (Hct) prediction of DBS using near-infrared (NIR) spectroscopy.

Clinical Scientists at the Ghent University Hospital (Ghent, Belgium) and their colleagues collected blood from 12 healthy volunteers via finger prick and each volunteer provided three capillary DBS and three corresponding liquid capillary samples, the latter being collected via heparinized microcapillaries. Left-over venous EDTA-anti-coagulated patient samples were used to generate DBS by pipetting 25 µL of whole blood onto Whatman 903 filter paper.

The team determined Hct L/L (liter of cells/liter of blood) values with a Sysmex XN-5000 hematology analyzer (Sysmex, Kobe, Japan). The Hct of liquid capillary blood samples was determined via centrifugation in a Hct-centrifuge (5 minutes, 12,000 rpm), and then measured using a micro-hematocrit reader (Hawksley, Lancing, UK). NIR measurements were performed on a NIRFlex N-500 Fourier Transformation spectrometer equipped with a fiber optics solids cell N500-007 (Büchi Labortechnik, Flawil, Switzerland). The results obtained via NIR for the DBS validation set (n = 49; singlicate analysis), measured at Day 0 and Day 5, were compared to those obtained with the hematology analyzer, being the standard method.

Using left-over EDTA-anticoagulated patient samples, the accuracy and precision, stability, and robustness were assessed. Furthermore, applicability of the method on capillary DBS was evaluated via finger prick samples. The investigators reported that the method validation amply met the pre-set acceptance criteria, with a maximum total precision of 4.5% and bias of 0.012 L/L. Also storage did not relevantly affect the Hct prediction, except for storage at 60 °C. The analysis of samples with a high hemolytic/icteric/lipemic index (HIL)-index showed that only lipemia had a significant effect on the Hct predictions. The mean difference was 0.035 L/L, which was considered acceptable.

The authors concluded that a commercially available NIR set-up was extensively and successfully validated, allowing non-contact Hct prediction of DBS with excellent accuracy and precision. This allows to correct for the Hct-based bias observed in partial-punch DBS analysis and the set-up of blood-plasma conversion factors, increasing the application potential of patient-centric sampling. The study was published on October 5, 2021 in the journal Clinica Chimica Acta.

Related Links:
Ghent University Hospital
Sysmex
Hawksley
Büchi Labortechnik


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Multi-Function Pipetting Platform
apricot PP5
New
Toxoplasma Gondii Immunoassay
Toxo IgM AccuBind ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Pathology

view channel
Image: The UV absorbance spectrometer being used to measure the absorbance spectra of cell culture samples (Photo courtesy of SMART CAMP)

Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures

Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.