Sensitive PCR Test Detects Early Stage Lyme Disease
|
By LabMedica International staff writers Posted on 19 Apr 2021 |
![Image: Darkfield photomicrograph (magnified 400x) showing the presence of the spirochaete Borrelia burgdorferi, which is the pathogen that causes Lyme disease (Photo courtesy of [U.S.] Centers for Disease Control and Prevention via Wikimedia Commons) Image: Darkfield photomicrograph (magnified 400x) showing the presence of the spirochaete Borrelia burgdorferi, which is the pathogen that causes Lyme disease (Photo courtesy of [U.S.] Centers for Disease Control and Prevention via Wikimedia Commons)](https://globetechcdn.com/mobile_labmedica/images/stories/articles/article_images/2021-04-19/GMS-027B.jpg)
Image: Darkfield photomicrograph (magnified 400x) showing the presence of the spirochaete Borrelia burgdorferi, which is the pathogen that causes Lyme disease (Photo courtesy of [U.S.] Centers for Disease Control and Prevention via Wikimedia Commons)
A highly sensitive blood test detects the bacteria that causes Lyme disease in early stages of the infection, when treatment can prevent the development of serious or fatal consequences of the chronic disease.
The successful treatment of Lyme disease (LD) is contingent on accurate diagnosis. However, current laboratory detection assays lack sensitivity in the early stages of the disease. Since delayed diagnosis of LD can result in high healthcare costs and great suffering to the patient, new highly sensitive tests are needed.
In this regard, investigators at the University of Leicester (United Kingdom) developed an internally controlled quantitative PCR test that targeted the multicopy terminase large subunit (terL) gene encoded by prophages that are only found in LD-causing bacteria. A prophage is a bacteriophage genome inserted and integrated into the circular bacterial DNA chromosome or present as an extrachromosomal plasmid. This is a latent form of a phage, in which the viral genes are present in the bacterium without causing disruption of the bacterial cell.
The newly developed Ter-qPCR test was based on the polymerase chain reaction (PCR), which amplifies small amounts of specific genetic material so that it can be detected. To increase the sensitivity of the test for detection of Borrelia burgdorferi, the causative agents of Lyme disease, the investigators adapted it to be specific for the prophage terL gene. The terL protein helps phages package their DNA.
The diagnostic potential of the Ter-qPCR test was evaluated using a set of blood and serum samples collected from healthy volunteers and individuals who were clinically diagnosed with Lyme disease. Results revealed that the detection limit of the Ter-qPCR test was estimated to be 22 copies, the equivalent of one bacterial cell in a bacteria spiked blood sample. Furthermore, significant quantitative differences were observed in terms of the amount of terL detected in healthy individuals and patients with either early or late Lyme disease.
"Early diagnosis of Lyme disease is absolutely vital in reducing suffering, because early Lyme can be treated, but late Lyme is very difficult to treat," said first author Dr. Jinyu Shan, a researcher in the department of respiratory sciences at the University of Leicester. "Current tests cannot typically detect the low numbers of bacteria in early-stage patient blood samples. Our goal was to design a highly sensitive test to help doctors to identify Lyme disease as early as possible. We are currently working with a commercial partner, and investigating regulatory issues and the potential for a clinical trial for this technology."
The Ter-qPCR test was described in the March 15, 2021, online edition of the journal Frontiers in Microbiology.
Related Links:
University of Leicester
The successful treatment of Lyme disease (LD) is contingent on accurate diagnosis. However, current laboratory detection assays lack sensitivity in the early stages of the disease. Since delayed diagnosis of LD can result in high healthcare costs and great suffering to the patient, new highly sensitive tests are needed.
In this regard, investigators at the University of Leicester (United Kingdom) developed an internally controlled quantitative PCR test that targeted the multicopy terminase large subunit (terL) gene encoded by prophages that are only found in LD-causing bacteria. A prophage is a bacteriophage genome inserted and integrated into the circular bacterial DNA chromosome or present as an extrachromosomal plasmid. This is a latent form of a phage, in which the viral genes are present in the bacterium without causing disruption of the bacterial cell.
The newly developed Ter-qPCR test was based on the polymerase chain reaction (PCR), which amplifies small amounts of specific genetic material so that it can be detected. To increase the sensitivity of the test for detection of Borrelia burgdorferi, the causative agents of Lyme disease, the investigators adapted it to be specific for the prophage terL gene. The terL protein helps phages package their DNA.
The diagnostic potential of the Ter-qPCR test was evaluated using a set of blood and serum samples collected from healthy volunteers and individuals who were clinically diagnosed with Lyme disease. Results revealed that the detection limit of the Ter-qPCR test was estimated to be 22 copies, the equivalent of one bacterial cell in a bacteria spiked blood sample. Furthermore, significant quantitative differences were observed in terms of the amount of terL detected in healthy individuals and patients with either early or late Lyme disease.
"Early diagnosis of Lyme disease is absolutely vital in reducing suffering, because early Lyme can be treated, but late Lyme is very difficult to treat," said first author Dr. Jinyu Shan, a researcher in the department of respiratory sciences at the University of Leicester. "Current tests cannot typically detect the low numbers of bacteria in early-stage patient blood samples. Our goal was to design a highly sensitive test to help doctors to identify Lyme disease as early as possible. We are currently working with a commercial partner, and investigating regulatory issues and the potential for a clinical trial for this technology."
The Ter-qPCR test was described in the March 15, 2021, online edition of the journal Frontiers in Microbiology.
Related Links:
University of Leicester
Latest Microbiology News
- High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
- Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
- Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
- Microfluidic Platform Assesses Neutrophil Function in Sepsis Patients
- New Diagnostic Method Confirms Sepsis Infections Earlier
- New Markers Could Predict Risk of Severe Chlamydia Infection
- Portable Spectroscopy Rapidly and Noninvasively Detects Bacterial Species in Vaginal Fluid
- CRISPR-Based Saliva Test Detects Tuberculosis Directly from Sputum
- Urine-Based Assay Diagnoses Common Lung Infection in Immunocompromised People
- Saliva Test Detects Implant-Related Microbial Risks
- New Platform Leverages AI and Quantum Computing to Predict Salmonella Antimicrobial Resistance
- Early Detection of Gut Microbiota Metabolite Linked to Atherosclerosis Could Revolutionize Diagnosis
- Viral Load Tests Can Help Predict Mpox Severity
- Gut Microbiota Analysis Enables Early and Non-Invasive Detection of Gestational Diabetes
- Credit Card-Sized Test Boosts TB Detection in HIV Hotspots
- Fecal Metabolite Profiling Predicts Mortality in Critically Ill Patients
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Chip Captures Cancer Cells from Blood to Help Select Right Breast Cancer Treatment
Ductal carcinoma in situ (DCIS) accounts for about a quarter of all breast cancer cases and generally carries a good prognosis. This non-invasive form of the disease may or may not become life-threatening.... Read more
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read moreMicrobiology
view channel
High-Throughput Enteric Panels Detect Multiple GI Bacterial Infections from Single Stool Swab Sample
Gastrointestinal (GI) infections are among the most common causes of illness worldwide, leading to over 1.7 million deaths annually and placing a heavy burden on healthcare systems. Conventional diagnostic... Read more
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read morePathology
view channel
3D Genome Mapping Tool to Improve Diagnosis and Treatment of Genetic Diseases
Standard laboratory tests often fail to detect complex DNA rearrangements that underlie many genetic diseases. To bridge this diagnostic gap, researchers have developed a 3D chromosome mapping method that... Read more
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Portable Biosensor Diagnoses Psychiatric Disorders Using Saliva Samples
Early diagnosis of psychiatric disorders such as depression, schizophrenia, and bipolar disorder remains one of medicine’s most pressing challenges. Current diagnostic methods rely heavily on clinical... Read more
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more







 Analyzer.jpg)
