ctDNA Provides Prognostic Clues in Advanced BRAF-Mutated Melanoma Cases
|
By LabMedica International staff writers Posted on 02 Mar 2021 |

Image: The QX200 Droplet Digital PCR system (Photo courtesy of Bio-Rad).
A BRAF mutation is a change in a BRAF gene. That change in the gene can lead to an alteration in a protein that regulates cell growth that could allow the melanoma to grow more aggressively. Approximately half of melanomas carry this mutation and are referred to as mutated, or BRAF positive.
Melanoma lacks validated blood-based biomarkers for monitoring and predicting treatment efficacy. Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA in the bloodstream that is not associated with cells. Because ctDNA may reflect the entire tumor genome, it has gained traction for its potential clinical utility.
Medical Scientists at the NYU Langone Health (New York, NY, USA) tracked circulating BRAFV600 mutation patterns in 383 individuals with melanoma, using analytically validated Droplet Digital PCR (Bio-Rad Laboratories, Hercules, CA, USA) profiles to pick up ctDNA mutations in individuals before and during treatment.
The investigators found that enhanced levels of circulating BRAFV600 mutation fragments in the blood prior to treatment in more than 350 patients with available blood plasma samples coincided with shorter overall survival times in the melanoma patients, regardless of whether they were getting dabrafenib or dabrafenib-trametinib treatment. In contrast, those with 64 ctDNA copies or fewer in each milliliter of blood at baseline saw overall average survival times of more than 35 months compared with 13.4 months in those with higher ctDNA levels.
The team noted that patients who had BRAF mutation-based ctDNA levels that were too low to detect by Droplet Digital PCR after four weeks of treatment had longer overall survival and progression-free survival times, based on data for more than 260 melanoma patients with available plasma samples at that point in their treatment.
David Polsky, MD, a Professor of Dermatology and a senior author of the study, said, “Our findings suggest that levels of ctDNA may serve as a fast and reliable tool to gauge whether an anticancer medication is working. A blood test based on such ctDNA-based markers could help support continuing the current treatment strategy or else encourage patients and physicians to consider other options.”
The authors concluded that pretreatment and on-treatment BRAF V600-mutant ctDNA measurements could serve as independent, predictive biomarkers of clinical outcome with targeted therapy. The study was published on February 12 2021 in the journal Lancet Oncology.
Related Links:
NYU Langone Health
Bio-Rad Laboratories
Melanoma lacks validated blood-based biomarkers for monitoring and predicting treatment efficacy. Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA in the bloodstream that is not associated with cells. Because ctDNA may reflect the entire tumor genome, it has gained traction for its potential clinical utility.
Medical Scientists at the NYU Langone Health (New York, NY, USA) tracked circulating BRAFV600 mutation patterns in 383 individuals with melanoma, using analytically validated Droplet Digital PCR (Bio-Rad Laboratories, Hercules, CA, USA) profiles to pick up ctDNA mutations in individuals before and during treatment.
The investigators found that enhanced levels of circulating BRAFV600 mutation fragments in the blood prior to treatment in more than 350 patients with available blood plasma samples coincided with shorter overall survival times in the melanoma patients, regardless of whether they were getting dabrafenib or dabrafenib-trametinib treatment. In contrast, those with 64 ctDNA copies or fewer in each milliliter of blood at baseline saw overall average survival times of more than 35 months compared with 13.4 months in those with higher ctDNA levels.
The team noted that patients who had BRAF mutation-based ctDNA levels that were too low to detect by Droplet Digital PCR after four weeks of treatment had longer overall survival and progression-free survival times, based on data for more than 260 melanoma patients with available plasma samples at that point in their treatment.
David Polsky, MD, a Professor of Dermatology and a senior author of the study, said, “Our findings suggest that levels of ctDNA may serve as a fast and reliable tool to gauge whether an anticancer medication is working. A blood test based on such ctDNA-based markers could help support continuing the current treatment strategy or else encourage patients and physicians to consider other options.”
The authors concluded that pretreatment and on-treatment BRAF V600-mutant ctDNA measurements could serve as independent, predictive biomarkers of clinical outcome with targeted therapy. The study was published on February 12 2021 in the journal Lancet Oncology.
Related Links:
NYU Langone Health
Bio-Rad Laboratories
Latest Pathology News
- New Molecular Analysis Tool to Improve Disease Diagnosis
- Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
- AI-Powered Method Combines Blood Data to Accurately Measure Biological Age
- AI Tool Detects Cancer in Blood Samples In 10 Minutes
- AI Pathology Analysis System Delivers Comprehensive Cancer Diagnosis
- AI Improves Cervical Cancer Screening in Low-Resource Settings
- New Multi-Omics Tool Illuminates Cancer Progression
- New Technique Detects Genetic Mutations in Brain Tumors During Surgery within 25 Minutes
- New Imaging Tech to Improve Diagnosis and Treatment of Skin Cancers
- Serially Testing Brain Tumor Samples Reveals Treatment Response in Glioblastoma Patients
- High-Accuracy Tumor Detection Method Offers Real-Time Surgical Guidance
- AI Tool Detects Hidden Warning Signs of Disease Inside Single Cells
- Automated Tool Detects Early Warning Signs of Breast Cancer
- New Software Tool Improves Analysis of Complex Spatial Data from Tissues
- AI Tool Helps Surgeons Distinguish Aggressive Glioblastoma from Other Brain Cancers in Real-Time
- New Tool Could Revolutionize Acute Leukemia Diagnosis
Channels
Clinical Chemistry
view channel
VOCs Show Promise for Early Multi-Cancer Detection
Early cancer detection is critical to improving survival rates, but most current screening methods focus on individual cancer types and often involve invasive procedures. This makes it difficult to identify... Read more
Portable Raman Spectroscopy Offers Cost-Effective Kidney Disease Diagnosis at POC
Kidney disease is typically diagnosed through blood or urine tests, often when patients present with symptoms such as blood in urine, shortness of breath, or weight loss. While these tests are common,... Read moreHematology
view channel
ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners
Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage
Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more
Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments
Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read moreImmunology
view channel
Blood-Based Liquid Biopsy Model Analyzes Immunotherapy Effectiveness
Immunotherapy has revolutionized cancer care by harnessing the immune system to fight tumors, yet predicting who will benefit remains a major challenge. Many patients undergo costly and taxing treatment... Read more
Signature Genes Predict T-Cell Expansion in Cancer Immunotherapy
Modern cancer immunotherapies rely on the ability of CD8⁺ T cells to rapidly multiply within tumors, generating the immune force needed to eliminate cancer cells. However, the biological triggers behind... Read moreMicrobiology
view channel
Fast Noninvasive Bedside Test Uses Sugar Fingerprint to Detect Fungal Infections
Candida bloodstream infections are a growing global health threat, causing an estimated 6 million cases and 3.8 million deaths annually. Hospitals are particularly vulnerable, as weakened patients after... Read more
Rapid Sepsis Diagnostic Device to Enable Personalized Critical Care for ICU Patients
Sepsis is a life-threatening condition that occurs when the body’s response to infection spirals out of control, damaging organs and leading to critical illness. Patients often arrive at intensive care... Read morePathology
view channel
New Molecular Analysis Tool to Improve Disease Diagnosis
Accurately distinguishing between similar biomolecules such as proteins is vital for biomedical research and diagnostics, yet existing analytical tools often fail to detect subtle structural or compositional... Read more
Tears Offer Noninvasive Alternative for Diagnosing Neurodegenerative Diseases
Diagnosing and monitoring eye and neurodegenerative diseases often requires invasive procedures to access ocular fluids. Ocular fluids like aqueous humor and vitreous humor contain valuable molecular information... Read moreTechnology
view channel
Cell-Sorting Device Uses Electromagnetic Levitation to Precisely Direct Cell Movement
Sorting different cell types—such as cancerous versus healthy or live versus dead cells—is a critical task in biology and medicine. However, conventional methods often require labeling, chemical exposure,... Read more
Embedded GPU Platform Enables Rapid Blood Profiling for POC Diagnostics
Blood tests remain a cornerstone of medical diagnostics, but traditional imaging and analysis methods can be slow, costly, and reliant on dyes or contrast agents. Now, scientists have developed a real-time,... Read moreIndustry
view channel
Qiagen Acquires Single-Cell Omics Firm Parse Biosciences
QIAGEN (Venlo, Netherlands) has entered into a definitive agreement to fully acquire Parse Biosciences (Seattle, WA, USA), a provider of scalable, instrument-free solutions for single-cell research.... Read more
Puritan Medical Products Showcasing Innovation at AMP2025 in Boston
Puritan Medical Products (Guilford, ME, USA), the world’s most trusted manufacturer of swabs and specimen collection devices, is set to exhibit at AMP2025 in Boston, Massachusetts, from November 11–15.... Read more
Advanced Instruments Merged Under Nova Biomedical Name
Advanced Instruments (Norwood, MA, USA) and Nova Biomedical (Waltham, MA, USA) are now officially doing business under a single, unified brand. This transformation is expected to deliver greater value... Read more







 assay.jpg)
