T Cell Response Profiled in COVID-19 Patients
By LabMedica International staff writers Posted on 22 Feb 2021 |

Image: T cell response in patients recovered from COVID-19 has been profiled using ImmunoScape TargetScape assay (Photo courtesy of The Scientist).
The clinical spectrum of SARS-CoV-2 infection is highly variable, spanning from asymptomatic or subclinical infection, to severe or fatal disease. Characterization of the immune response to SARS-CoV-2 is urgently needed in order to better inform more effective treatment strategies, including antivirals and rationally designed vaccines.
Antibody responses to SARS-CoV-2 have been shown to be heterogenous, whereby male sex, advanced age and hospitalization status are associated with higher titers of antibodies. Low or even undetectable neutralizing antibodies in some individuals with rapid decline in circulating antibodies to SARS-CoV-2 after resolution of symptoms underscores the need to assess the role of the cellular immune response.
Medical Scientists from the National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) and their colleagues from other institutes collected blood samples from 30 COVID-19 convalescent individuals. The samples were separated into plasma and peripheral blood mononuclear cells (PBMC) within 12 hours of blood collection. Aliquots of plasma and PBMC were stored at -80 ˚C until further processing.
A subset of convalescent individuals was selected for evaluating SARS-CoV-2 specific CD8+ T cells using highly multiplexed mass cytometry. For the profiling work, the team used the TargetScape assay (ImmunoScape Pte Ltd, Singapore, Singapore), which uses mass cytometry to study antigen-specific CD8+ T cells. The TargetScape platform uses tetramers containing major histocompatibility complexes (MHCs) loaded with peptide antigens of interest to profile patient immune responses. Highly sensitive, multiplexed sandwich immunoassays using MULTI-ARRAY electrochemiluminescence detection technology (MesoScale Discovery, Gaithersburg, MD, USA) were used for the quantitative evaluation of 35 different human cytokines and chemokines in plasma samples from eligible donors.
The scientists reported that there were 132 SARS-CoV-2-specific CD8+ T cell responses detected across six different HLAs, corresponding to 52 unique epitope reactivities. CD8+ T cell responses were detected in almost all convalescent individuals and were directed against several structural and non-structural target epitopes from the entire SARS-CoV-2 proteome. A unique phenotype for SARS-CoV-2-specific T cells was observed that was distinct from other common virus-specific T cells detected in the same cross-sectional sample and characterized by early differentiation kinetics. Modeling demonstrated a coordinated and dynamic immune response characterized by a decrease in inflammation, increase in neutralizing antibody titer, and differentiation of a specific CD8+ T cell response.
Andrew D. Redd, PhD, an assistant professor and a senior study author, said, “The approach allowed us to investigate a much wider range of epitopes than would be possible with traditional T cell profiling approaches like enzyme-linked immune absorbent spot (ELISpot) assays or flow cytometry. Another advantage was the ability to tag the same epitopes with two different barcodes, which improves the specificity of the assay by letting scientists require both barcodes to be detected in order to call a T cell-epitope hit.”
The authors concluded that the discovery of hitherto undescribed SARS-CoV-2 T cell specificities, their unbiased phenotypic evaluation, and their correlation with the overall inflammation greatly extends the current understanding about natural immunity to SARS-CoV-2. The study was published on January 11, 2021 in the Journal of Clinical Investigation.
Related Links:
National Institute of Allergy and Infectious Diseases
ImmunoScape Pte Ltd
MesoScale Discovery
Antibody responses to SARS-CoV-2 have been shown to be heterogenous, whereby male sex, advanced age and hospitalization status are associated with higher titers of antibodies. Low or even undetectable neutralizing antibodies in some individuals with rapid decline in circulating antibodies to SARS-CoV-2 after resolution of symptoms underscores the need to assess the role of the cellular immune response.
Medical Scientists from the National Institute of Allergy and Infectious Diseases (Bethesda, MD, USA) and their colleagues from other institutes collected blood samples from 30 COVID-19 convalescent individuals. The samples were separated into plasma and peripheral blood mononuclear cells (PBMC) within 12 hours of blood collection. Aliquots of plasma and PBMC were stored at -80 ˚C until further processing.
A subset of convalescent individuals was selected for evaluating SARS-CoV-2 specific CD8+ T cells using highly multiplexed mass cytometry. For the profiling work, the team used the TargetScape assay (ImmunoScape Pte Ltd, Singapore, Singapore), which uses mass cytometry to study antigen-specific CD8+ T cells. The TargetScape platform uses tetramers containing major histocompatibility complexes (MHCs) loaded with peptide antigens of interest to profile patient immune responses. Highly sensitive, multiplexed sandwich immunoassays using MULTI-ARRAY electrochemiluminescence detection technology (MesoScale Discovery, Gaithersburg, MD, USA) were used for the quantitative evaluation of 35 different human cytokines and chemokines in plasma samples from eligible donors.
The scientists reported that there were 132 SARS-CoV-2-specific CD8+ T cell responses detected across six different HLAs, corresponding to 52 unique epitope reactivities. CD8+ T cell responses were detected in almost all convalescent individuals and were directed against several structural and non-structural target epitopes from the entire SARS-CoV-2 proteome. A unique phenotype for SARS-CoV-2-specific T cells was observed that was distinct from other common virus-specific T cells detected in the same cross-sectional sample and characterized by early differentiation kinetics. Modeling demonstrated a coordinated and dynamic immune response characterized by a decrease in inflammation, increase in neutralizing antibody titer, and differentiation of a specific CD8+ T cell response.
Andrew D. Redd, PhD, an assistant professor and a senior study author, said, “The approach allowed us to investigate a much wider range of epitopes than would be possible with traditional T cell profiling approaches like enzyme-linked immune absorbent spot (ELISpot) assays or flow cytometry. Another advantage was the ability to tag the same epitopes with two different barcodes, which improves the specificity of the assay by letting scientists require both barcodes to be detected in order to call a T cell-epitope hit.”
The authors concluded that the discovery of hitherto undescribed SARS-CoV-2 T cell specificities, their unbiased phenotypic evaluation, and their correlation with the overall inflammation greatly extends the current understanding about natural immunity to SARS-CoV-2. The study was published on January 11, 2021 in the Journal of Clinical Investigation.
Related Links:
National Institute of Allergy and Infectious Diseases
ImmunoScape Pte Ltd
MesoScale Discovery
Latest Immunology News
- Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer
- Machine Learning-Enabled Blood Test Predicts Immunotherapy Response in Lymphoma Patients
- Post-Treatment Blood Test Could Inform Future Cancer Therapy Decisions
- Cerebrospinal Fluid Test Predicts Dangerous Side Effect of Cancer Treatment
- New Test Measures Preterm Infant Immunity Using Only Two Drops of Blood
- Simple Blood Test Could Help Choose Better Treatments for Patients with Recurrent Endometrial Cancer
- Novel Analytical Method Tracks Progression of Autoimmune Diseases
- 3D Bioprinted Gastric Cancer Model Uses Patient-Derived Tissue Fragments to Predict Drug Response
- Blood Test for Fungal Infections Could End Invasive Tissue Biopsies
- Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies
- New Discovery in Blood Immune Cells Paves Way for Parkinson's Disease Diagnostic Test
- AI Tool Uses Routine Blood Tests to Predict Immunotherapy Response for Various Cancers
- Blood Test Can Predict How Long Vaccine Immunity Will Last
- Microfluidic Chip-Based Device to Measure Viral Immunity
Channels
Clinical Chemistry
view channel
‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection
Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more
Low-Cost Portable Screening Test to Transform Kidney Disease Detection
Millions of individuals suffer from kidney disease, which often remains undiagnosed until it has reached a critical stage. This silent epidemic not only diminishes the quality of life for those affected... Read more
New Method Uses Pulsed Infrared Light to Find Cancer's 'Fingerprints' In Blood Plasma
Cancer diagnoses have traditionally relied on invasive or time-consuming procedures like tissue biopsies. Now, new research published in ACS Central Science introduces a method that utilizes pulsed infrared... Read moreMolecular Diagnostics
view channel
Simple Blood Test Improves Heart Attack and Stroke Risk Prediction
Troponin is a protein found in heart muscle cells that is released into the bloodstream when the heart is damaged. High-sensitivity troponin blood tests are commonly used in hospitals to diagnose heart... Read more
Blood Biomarker Test Could Detect Genetic Predisposition to Alzheimer’s
New medications for Alzheimer’s disease, the most common form of dementia, are now becoming available. These treatments, known as “amyloid antibodies,” work by promoting the removal of small deposits from... Read more
Novel Autoantibody Against DAGLA Discovered in Cerebellitis
Autoimmune cerebellar ataxias are strongly disabling disorders characterized by an impaired ability to coordinate muscle movement. Cerebellar autoantibodies serve as useful biomarkers to support rapid... Read more
Gene-Based Blood Test Accurately Predicts Tumor Recurrence of Advanced Skin Cancer
Melanoma, an aggressive form of skin cancer, becomes extremely difficult to treat once it spreads to other parts of the body. For patients with metastatic melanoma tumors that cannot be surgically removed... Read moreHematology
view channel
New Scoring System Predicts Risk of Developing Cancer from Common Blood Disorder
Clonal cytopenia of undetermined significance (CCUS) is a blood disorder commonly found in older adults, characterized by mutations in blood cells and a low blood count, but without any obvious cause or... Read more
Non-Invasive Prenatal Test for Fetal RhD Status Demonstrates 100% Accuracy
In the United States, approximately 15% of pregnant individuals are RhD-negative. However, in about 40% of these cases, the fetus is also RhD-negative, making the administration of RhoGAM unnecessary.... Read moreMicrobiology
view channel
Handheld Device Delivers Low-Cost TB Results in Less Than One Hour
Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more
New AI-Based Method Improves Diagnosis of Drug-Resistant Infections
Drug-resistant infections, particularly those caused by deadly bacteria like tuberculosis and staphylococcus, are rapidly emerging as a global health emergency. These infections are more difficult to treat,... Read more
Breakthrough Diagnostic Technology Identifies Bacterial Infections with Almost 100% Accuracy within Three Hours
Rapid and precise identification of pathogenic microbes in patient samples is essential for the effective treatment of acute infectious diseases, such as sepsis. The fluorescence in situ hybridization... Read morePathology
view channel
Spit Test More Accurate at Identifying Future Prostate Cancer Risk
Currently, blood tests that measure the level of a protein called prostate-specific antigen (PSA) are commonly used to identify men at higher risk for prostate cancer. This test is typically used based... Read more
DNA Nanotechnology Boosts Sensitivity of Test Strips
Since the Covid-19 pandemic, most people have become familiar with paper-based rapid test strips, also known as lateral flow immunoassays (LFIAs). These tests are used to quickly detect biomarkers that... Read more
Novel UV and Machine Learning-Aided Method Detects Microbial Contamination in Cell Cultures
Cell therapy holds great potential in treating diseases such as cancers, inflammatory conditions, and chronic degenerative disorders by manipulating or replacing cells to restore function or combat disease.... Read moreTechnology
view channel
Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples
As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more
Pain-On-A-Chip Microfluidic Device Determines Types of Chronic Pain from Blood Samples
Chronic pain is a widespread condition that remains difficult to manage, and existing clinical methods for its treatment rely largely on self-reporting, which can be subjective and especially problematic... Read more
Innovative, Label-Free Ratiometric Fluorosensor Enables More Sensitive Viral RNA Detection
Viruses present a major global health risk, as demonstrated by recent pandemics, making early detection and identification essential for preventing new outbreaks. While traditional detection methods are... Read moreIndustry
view channel
Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions
Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Grifols and Tecan’s IBL Collaborate on Advanced Biomarker Panels
Grifols (Barcelona, Spain), one of the world’s leading producers of plasma-derived medicines and innovative diagnostic solutions, is expanding its offer in clinical diagnostics through a strategic partnership... Read more