LabMedica

Download Mobile App
Recent News Expo Clinical Chem. Molecular Diagnostics Hematology Immunology Microbiology Pathology Technology Industry Focus

Next Generation Sequencing Finds More Gene Mutations for Leukemia

By LabMedica International staff writers
Posted on 18 Feb 2021
Print article
Image: TruSight Oncology 500 is a next-generation sequencing (NGS) assay that enables in-house comprehensive genomic profiling of tumor samples it accurately measures key current immuno-oncology biomarkers: microsatellite instability (MSI) and tumor mutational burden (TMB) (Photo courtesy of Illumina).
Image: TruSight Oncology 500 is a next-generation sequencing (NGS) assay that enables in-house comprehensive genomic profiling of tumor samples it accurately measures key current immuno-oncology biomarkers: microsatellite instability (MSI) and tumor mutational burden (TMB) (Photo courtesy of Illumina).
Myeloid malignancies are characterized by uncontrolled proliferation and/or defects in differentiation of abnormal myeloid progenitor cells. Myelodysplastic syndromes (MDS) and myeloproliferative neoplasms (MPNs) are often thought to be precursors to a higher grade myeloid malignancies, namely acute myeloid leukemia (AML).

Many laboratories have used relatively small targeted panels that screen prominent mutation hotspots in less than 50 genes. Although this approach is cost- and time- effective with minimal data analysis and reporting complexity, it yields an incomplete mutational profile, omitting several important known hotspot mutations.

Pathologists at the Medical College of Georgia (Augusta, GA, USA) included 40 patient with myeloid neoplasms samples in a study, clinical information was available on 27 patients. The investigators retrospectively analyzed 61 bone marrow samples. DNA was isolated from bone marrow aspirates using the QIAamp DNA Blood Mini kit (QIAGEN, Hilden, Germany). Nanodrop spectrophotometer was used to analyze the DNA quality with an OD 260/280 value between 1.7 and 2.2 being considered acceptable.

Double stranded DNA was measured using Qubit dsDNA broad range assay kit (Invitrogen, Carlsbad CA, USA) and 120 ng gDNA was used for library preparation. The team evaluated the clinical performance and utility of a comprehensive 523 gene NGS panel (Illumina, San Diego, CA, USA) for screening myeloid neoplasms. The high-throughput comprehensive Next-Generation Sequencing (NGS) panel was validated for single-nucleotide variants (SNVs) and indels/duplications in myeloid neoplasms.

The scientists reported the larger panel identified 880 variants in 292 genes, and only 14.8% of the variants were in genes included in the smaller 54-gene panel currently in use by many laboratories. The remaining 749 variants are not typically assessed in a leukemia diagnosis or detected by the 54-gene panel. When they looked at the information available on those 749 variants in follow up, they found at least 14 of the variants in 10 genes likely could contribute to AML and 96.2% of the patients had at least one of the 14 novel variants. They also found 22 variants in five other genes associated with other tumor types in the vast majority of the patients with AML.

The authors concluded that the comprehensive panel employed in their study, demonstrated its ease of use and clinical utility for myeloid neoplasms. The panel has extensive coverage across the entire genome, for variants significantly beyond those captured on existing NGS platforms for hematological malignancies. The study was originally published on October 19, 2020 in the journal PLOS ONE.


Related Links:
Medical College of Georgia
Qiagen
Invitrogen
Illumina


Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Bordetella Pertussis Molecular Assay
Alethia Pertussis
New
Piezoelectric Micropump
Disc Pump

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Sekisui Diagnostics UK Ltd.